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Abstract

These are notes for an undergraduate course on differential equations; please send corrections,
suggestions and notes to courses@suchideas.com The author’s homepage for all courses may be
found on his website at Suchldeas.com, which is where updated and corrected versions of these
notes can also be found.

The course materials are licensed under a permissive Creative Commons license: Attribution-
NonCommercial-ShareAlike 3.0 Unported (see the CC website for more details).

Thanks go to Professor G. Worster for allowing me to use his Differential Equations course
(Michaelmas 2009) as the basis for these notes.
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1 Non-Rigorous Background

This course is about the study of differential equations, in which variables are investigated in terms
of rates of change (not just with respect to time). It is, obviously, an area of mathematics with many
direct applications to physics, including mechanics and so on. As such, it is important to have a grasp

of how we codify a physical problem; we introduce this with an example:

Proposition 1.1 (Newton’s Law of Cooling). If a body of temperature T (t) is placed in an environment

of temperature Ty then it will cool at a rate proportional to the difference in temperature.

Definition 1.2. A dependent variable is a variables considered as changing as a consequence of

changes in other variables, which are called independent variables.

In the example of Newton’s Law of Cooling, the dependent variable is the temperature T° which
depends upon the independent variable time, ¢. The standard (Leibniz) notation for differentiation

then gives us these equivalent forms for Newton’s Law:

dT

w < T-To
dT

= = —k(T-T
i k( 0)

where we take k£ to be a constant; in fact, we require the constant of proportionality k£ > 0 for actual
physical temperature exchanges.

Having established this basic approach, we shall begin with a fairly informal overview of differenti-
ation and integration, to help us understand the techniques we will develop later. For a fully rigorous

(axiomatic) approach to calculus, see the Analysis courses.

1.1 Differentiation using Big O and Little-o Notation

We define the rate of change of a function f (x) as being

ﬂ = lim
de hlao

fleth) - f(x)
h

which is pictorially equivalent to the gradient of f at x.
Note that the limit can be taken from above or below, written lim;,_,q+ W, with both side
limits being equal for differentiable functions. (Hence f (z) = |z| is not differentiable at « = 0.)

We use various notations, given f = f (z):

L=r@=(g)wl=gf
d

where - is a differential operator. Then



df

1> We introduce another

To try and come up with a concise and useful way of writing f in terms of

notation (or two).

Definition 1.3. We write
f(z)=o0(g9(x))

as x — cif
lim f(z)

=0
z—e g (z)

and we say f is little-o of g (as x tends to c).

This definition allows us to make explicit what we mean by f ‘grows more slowly’ than g.

Example 1.4.

(i) z=o0(\/x)as z — 0T,

(ii) Inz = o(x) as ¢ — +o0.

Definition 1.5. We say that

as x — cif

is bounded as x — ¢, and we say f is big-O of g (as  tends to c).

This similarly gives a rigorous definition of what it means to say that g ‘grows at least as quickly’ as
/. Indeed, if f = o (g) then it follows that f = O (g).

Example 1.6. 2”22_’” =0(1) as  — oo. Similarly, 222 — 2z = O (22 + 1) = O (2?).
x24+1

It follows that
df _fla+h)=f@)  olh)

dx h h
the term on the right being referred to as the error term. (If we wrote it as e (h) = OTh) we would have
a function e such that + — 0 as h — 0.)

Thus
d
N I RO

dx

and hence

daf
dx

linear approximation

flx+h)= f(x)+h +o(h)



Applying this to some fixed point z¢ we obtain, for a general point z = xg + h,

flaoth) = f(xo>+h[ﬂ o(h)

dx
df

F@ = S |[E] o

Equivalently, if y = f (),
Y= yo+m(z—xo) +o(h)
—_—
linear approximation

which gives the equation of the tangent line of the graph of y = f (z) or y ().

1.1.1 The chain rule

Consider f(z) = F[g(x)], assuming these are all differentiable functions in some interval. We use
little-o notation to derive the chain rule, that [’ (z) = ¢'(x)F’ [g (x)].

o Flgeth)] - Flg()
dz h—0 h

= i 3 (Pl @)+ hg'(@) + o (W) — F o (2)])

= Jim 2 {Flg ()] + [h/ () + 0 (1) F' g (2)] + 0 (k' () + 0 () ~ Flg ()]}

Here note o (h) F’' [g (z)] = o(h) for finite F’, and similarly hg’(x) tends to O like h for finite ¢, so
(noting that the F'[g (x)] terms cancel)

L= i (b @)F [o ()] + 0 ()

= g'@)F [g(x)]

This can be written as
df df dg

dx_dg'dx

Example 1.7. If f (z) = Vsinz, then g (z) = sinz and F [z] = /x, so f' (z) = cosx - 2\/:1?

1.1.2 The inverse function rule

A special case of this is that
1= de  dwx d7y

_a_dy'dx

do_ (dy)™
dy  \dz

If we have y = f (), then dy/dx = f' (z).

so that



Now z = f~! (y) implies that

but then from the above, we have

I
—~
~

2
—

8
S~—"
=

L

Rewriting everything in terms of one variable,

LR VO

1.1.3 The product rule

We can also show that if f (z) = u(x) v (x), where u and v are differentiable, % = u'v + wv’, using a

similar argument.

Exercise 1.8. Prove the product rule using little-o notation.

1.1.4 Leibniz’s rule

If f = uv we have

f = w
o= v+
f// — u//v + u/,UI + U’ul + Uu//

= v+ 20V +uw"”

1,1 "

u v+ 3" 4+ 3w + 3v

fl//

This suggests a pattern, with the numbers echoing Pascal’s triangle. Indeed, it is fairly easy to
show (by induction) that

n

(n) — ™ (=1 4 ... (n=r),(r) 4 ... (n)
7 (x) =u"™o + nu L u o\ 4w

r

This is referred to as (the general) Leibniz’s rule.

1.1.5 Taylor series

Recall that

fla+h) = f@)+hf (@) +o(h)



Now imagine that f’ () is differentiable, and so on; then we can construct

(@ +h) :.ﬂw+hf®%+%fW@+0Wﬂ

h? h"
f@)+hf (@) + S " (@) 4+ [0 (@) + By

where E,, = o (h™) as h — 0, provided f("+1) () exists.

Theorem 1.9 (Taylor’s Theorem).

This leads to the Taylor series about xy and gives a useful local approximation for f. We cannot

expect it to be of much use when x — x( grows large.

1.1.6 L’Hépital’s rule

Let f (x) and g (x) be differentiable at x = ¢, and

Then

lim I (@) = lim I'(@)

o g (@) =m0 g (@)

provided ¢’ (zo) # 0 (and that the limit exists).

Proof. From Taylor series, we have

f(x) = f(zo)+ (x—z0) f (20) +0(x — x0)
g(x) = g(xo)+ (x—=z0)g (x0) +o0(x —x0)

and hence f (z9) = g (zo) = 0; then

A~
9 g
where Az = x — xg. Then as Az — 0,
. r
9 9



1.2 Integration

The basic idea behind integration is of a refined sum of the area under a graph; for example, a simple

definition of the Riemann integral, where it exists, might be given by

b N—-1
[ 7= i 3 () 00

where x,, are N points spaced throughout [a, b], where Az = x,, — x,,_1 is the size of the interval being

summed over.

Note that if f’ is finite, the difference between the area beneath the graph and the approxima-
tion given above is a roughly triangular shape of area |E,|, where the base is Az and the height is
1 (x,) Az + o (Az). Hence

E, = %Am[f’(xn)Ax—&—o(Ax)]
- o((m)z)

for finite f.

Hence since we choose z,, above so that the Az = O (%), we get

. N-1 1
Area = ngnoc [Z f(zn) Az + 0O (N)]

n=1

N-1
= lim [Z f(zn) Az
n=1

N—o0

/abf(x)dx

as defined above.

1.2.1 The Fundamental Theorem of Calculus

We now understand intuitively what we mean by integration, but we need to develop the relationship
between the function f and its integral. It is traditional to say that integration is the opposite of

differentiation. The following theorem says exactly what we mean by this.

Theorem 1.10 (The Fundamental Theorem of Calculus).

Proof. We shall not claim to give a full proof of the above theorem, but if we assume that if
f;Jrh f@®)dt=f(x)h+0O (h2) we can establish it. The partial proof is obtained simply be setting



= f; f (t)dt and calculating

d z+h T
- mi[/ f(t)dt—/ f(t)dt]

O

This means that if we have a continuous function f that we recognize as the derivative of some
other function F, we can infer that [ f (t)dt = F (z) — F (a).

Remark. Note that we are taking the derivative with respect to the upper limit; the corresponding

b
& [ 10d= 1@

as can be seen by exchanging the two limits.

result for the lower limit is

Additionally, we can establish, via the chain rule, that

d 9@ dg d
— t)ydt = t)dt
dz /, F®) dz dg/ f

= 4 (9 (x))

Finally, we can define the indefinite integral for convenience:
Definition 1.11. A indefinite integral is written as

/f(x)dxz/zf(t)dt

where the lower limit is unspecified, giving rise to the familiar arbitrary additive constant.

1.2.2 Integration by substitution

Now using the fundamental theorem of calculus, we can reverse our rules for differentiation to obtain

techniques for integration. In the case of the chain rule, this gives rise to the familiar method of

[ ) Sae= [

or more accurately, giving explicit limits,

/f dar—/uq:j)f(t)dt

10

integration by substitution:



Note that we are again assuming sufficient continuity of f, and also of u (since we need it to have

a derivative). It is then clear that if F = [ f is an antiderivative of f, then

u' (z) F' (u(x))
u () f (u(2))

|
=
O
S~—

I

and hence that

as was required.

Example 1.12. For completeness, we give an example:

1—2x

Vo — xde
/ (z— 3:2)_1/2 (1—2x)dx

Then u = z — 22 gives 9% = (1 — 2z), so the integral becomes

dz
I = /u_l/Qdu
= 2?4 C

2V —x224+C

Note that we avoided writing du = (1 — 2x) dz, since we have not really given a meaning to this

expression. This is best used only as a mnemonic.

Integration by substitution often requires a certain amount of inventiveness, so it is useful to have
some rules of thumb for dealing with some forms of integrand. This table has some suggestions for

trigonometric substitutions:

Identity Function Substitution
cos?0 +sin?0 =1 V1-—22 x =sinf
1+ tan? 6 = sec? 0 1+ 22 x =tand

cosh? u — sinh?u = 1 x? —1 x = coshu

2 4+1 z = sinhu

2

1 — tanh® u = sech®u 11—z z = tanhu

11



Example 1.13. This gives one example of the application of such an identity: consider

J V2x — 22dz. An often useful approach with expressions like this is to complete the square:

/mdx _ /,/1_@_1)%

Then this has the form above suggesting a sin 6 substitution. In this case, we want x —1 = sin 0,

and so we have
dx
Q0 — 2 — 1— 1 204
/\/ r — 22dx / (sin0) dé)de
= /cos9~cos 0deo

= /cos2 6de

We can then calculate this using the standard double-angle formula cos 20 = 2 cos? 6 — 1:

1
/c0529d9 = /5(1+00829)d0

1 1
= —@+ -sin20+C

2 4
= Lot Lanocosorc
= 2 28111 COs

_ %Sin_l(x71)+%(x71)\/17(1:71)2+C

Another example shows that choosing the right substitution may not be obvious:

Example 1.14. Calculate [ 3%z dz.
It might seem tempting to try and simplify the denominator in this expression, but the best

approach in fact is to avoid having terms both in the numerator and denominator, which is most

easily done by eliminating the = term on top. Here, let u = 22 gives g—; = 2z and thus we get
1 1
/ T g = 1 / 1w
14 a4 2/ 1+u?
Then using the v = tan # substitution, we get
1 1 1 1
z —— du = = | ———sec?60do
2/1+u2 b 2/1+tan29wc
1
= —0+C
5 +
1
= 3 tan ' z? + D

12



1.2.3 Integration by parts
Again, we can use the Leibniz identity for differentiation, (uv)/ = u'v 4+ uv’, to obtain an integration

technique:

/(u’v—&-uv’)dx = w

/uv’dx = uv—/u’vdx

Again, this demands some inventiveness in its application - identifying what to call © and what to
call v’ is not always easy.

We begin with a straight-forward example:

Example 1.15. Calculate [~ ze “dx.

To simplify the integral we want to make the u'v expression easier to integrate. Taking u = x

/ ze fdx = [—xe‘”]go—/ —e *dx
0 0

and v/ = e~ % gives

= 0+ [—e_g”]go
= 0+1
=1

This technique but can actually give surprising results:.

Example 1.16. Calculate [ e” coszdz.

Using the technique, we write u = cosz and v’ = €*, which gives us
/ez cosxdx = e” cosx + /ez sin xdx
with a similar integral to be computed. We can now take u = sinz, and v’ = e* again, to get
/e"” sinzdr = e”sinx — /ew cos zdx

Hence we have

/ e“coszdr = e cosx+e’sinxw — / e” cos zdx
2 / e®cosxdr = €®[sinz+cosz]+C
xr 1 xT :
e’ coszdr = 3¢ [sinz + cosz] + D

13



Remark. Another approach to this is to use complex numbers: we remember Euler’s identity, e!* =

/e(l“)wdm = /e"” cosacd:r—H‘/eaJ sinzdz

Taking real parts, we then get

1 .
Re {6(1“)”’} +C = /e’” cos xdx

cosx + isinzx, and then see

141

1—i
/e””cosxd:v = Re{ 226”}65”—1-0

1 .
= §€l [cosz + sinz] + C

Exercise 1.17. Calculate fsec3 zdx.

A particularly common application of integration by parts is in proving reduction formulae.

Example 1.18. Calculate I,, = [ cos™ zdz in terms of I,,_.

We can do this by setting u = cosx and v’ = cos" ! z:
I, = cos" 'xsinz + / (n — 1) cos" 2 zsin® zdx

= cos" txsinaz 4 (n—1) / cos" %z (1 — cos® z) d
= cos" tasineg +(n—1) (T2 —I,)
nl, = cos" tasinz+ (n—1)1, o

1 n—1

e .
I, = —cos rsinx + TIn_Q

n

where we ignore the various integration constants.

14



2 Functions of Several Variables

One of the most natural extensions of this kind of calculus is to generalize from f (x) to f (z,y, -, 2),
or f(x) for a vector x. These functions obviously naturally arise in all sorts of situations, including

any physical situation with a function defined on all space, like electromagnetic fields.

To begin with, we will focus on functions of two variables f (z,y). Examples abound, with one of
the most useful being the height of terrain, z (x,y); pressure maps at sea level also provide a familiar
example. However, we will also consider more abstract parameterizations, like the density of a gas as

a function of temperature and pressure, p (T, p).

These functions are best represented by contour plots in 2D (or surface/heightmap plots in simu-
lated 3D), and we will see how to draw these diagrams, as well as how to analyze them.

What is the slope of a hill?

This is natural motivating question for differential calculus on surfaces. The key observation is that
slope depends on direction. We begin by thinking about the slopes in directions parallel to the coordi-

nate axes.

Definition 2.1. The partial derivative of f (z,y) with respect to x is the rate of change of f with
respect to x keeping y constant. We write

Bf - 1 f(!E-f-&iU,:l/) —f(m,y)

—| = lim
8xy 52—0 ox

The definition of Jf/0y|, is similar. We shall often omit explicitly writing the variable(s) we
hold constant, where there is minimal danger or confusion - in general, if f = f (21,22, - ,2,) then
we assume 0f/0x; means holding all z; constant for j # i. Note that it makes no sense to take a

derivative with respect to a variable held constant!

It is important to note that the partial derivative is still a function of both x and y, like f. We

denote the partial derivative with respect to x at (z¢,yo) by

of

or 9 (zo,90) or 2L\ (z0,90)
o7 or o Zo,Yo) OT o Zo, Yo

T=T0,Y=Yo Yy

depending on what looks most readable. The unfortunate ambiguity in the appearance of these nota-

tions is not usually too much of a problem.

Example 2.2. For example, if
fla,y) =22 +y° +ev

15



then we have

% — 2.7/' + y2ewy2
oz
Yy
g = 3y2 + 2xye$y2
|,
Leaving out the explicit subscripts, and extending Leibniz’s notation to partial derivatives, we
also get
an 4 _xy?
gz = 2ty
82
TyJ; = 6y+ 2ae™” + 4x2y26xy2
o _ o[
O0xdy Oz |0y
= 2yeg”y2 + 23:1;369”7*’2
of _ oo
Ooyoxr Oy |Ox

2yegﬂy2 + 2z ey’

Note that the so-called mized second partial derivatives mean

*f _ 0] of
dzdy — x|, dy|,
which is very cumbersome to write out.
It is actually a general rule that
o*f  0*f
0xdy  Oydx

so long as we are working in flat space, and all of the second partial derivatives are continuous - in

general, it is called Clairaut’s theorem or Schwarz’s theorem:

Theorem 2.3 (Clairaut).

We will not prove this theorem here, but we usually assume that this is valid without worrying
about the details.

Note that while we will often neglect to indicate which variables are fixed, assuming all those not

16



mentioned are, it does make a difference.

Example 2.4. If f (z,y,2) = zyz then

of _ 9of
or =~ Oz vz
= yz
but
of

ox

= m%—l—z
y_y Ox

This assumes that we have some idea of z varying with z - typically, we might look at the values

of f on a surface in 3 dimensional space, so we could have z = z (z,y) on that surface.

Remark. Another very useful notation for partial derivatives is to write

and then for higher derivatives,

=
H
<
Il
Q
<
Q
8

I
S
/7~
QD‘%
8 |~
~

Note that the order of the subscripts is the order that the derivatives are taken in, not the order

they are written in, in Leibniz’s notation.

We will not make much use of this notation in this course, preferring to keep subscripts for indexing.

17



2.1 The Chain Rule

a) Surface b) Contours and a short path
(a)

Figure 2.1: An example of a family

Imagine we are walking across a hilly landscape, like that shown in Figure 2.1, where the height at any
point is given by z = f (x,y). Say we walk a small distance dx in the z direction, and then a small
distance Jy in the y direction. Then the total change in height is

of = flz+ox,y+oy) — f(z,y)
[f (x + o,y + 0y) — f (= + 0z, y)]
+[f (= + 0z, y) — f (2, )]

But then, if we assume f is reasonably smooth in both the z and y directions around the point
(z,y), we can deduce that

5f =

of
a—y (x + dz,y) - oy + o (dy)

o

xT

_|_

)
_ %z(x’y).5y+o(5x)-5y+0(5y)

—|—g—£ (z,y) - dx + o (0x)
of af

z,y) - 0x + o (dx)

o0x + o (dz, 0y)

where the term o (6, dy) is taken as meaning a collection of terms that tend to 0 faster than either dz

or 6y when dz and dy tend to 0.

Informally, when we take the limit dx, dy — 0 we get an expression for an ‘infinitesimal’ change in

18



f, given infinitesimal changes in x and y, which can be written as

oy, 0y,

V=2,%" o0

which is called the chain rule in differential form (terms with upright ‘d’s, like df, are differentials).

We write this on the understanding that we will either sum the differentials, as in

Joar - (e

or divide by another infinitesimal, as in

df 9ofdx Ofdy

dt " drdt oydt

or

of 8f8x+8f(')y
ot dx dt | Oy ot

before taking the limit. These last forms are technically the correct way of stating the chain rule.

The first is best viewed as saying that, if we walk along a path x = z (t) and y = y (¢) as time ¢
passes, then the rate at which f changes along the path (z (¢),y (¢)) is given by the above formula for
df/dt. The second form assumes that we have f = f (z (¢,u),y (¢,u)) so that our path depends on
two variables t and u; we can then look at the rate of change of f along the path as we vary one of
these parameters. For example, we might have a family of paths indexed by u, with each path being
parameterized by time . We can then ask, given that we stick to the path given by ug, what is the
rate of change 0f /0t along this path?

The first formula can be derived from the original expression in terms of o (dz,dy) by taking the
following limit with f = f (z (¢),y (¢)):

df _ . of

dt  sto0 ot
B of bz Of by = o(dz,dy)
= 5% oot Tayet T ot

Then provided @ = 4% is finite, we have dz = @6t and so if € = o (6x) then € = o(6t). From this it

dt
follows that
d f 0 f dz Bi %

dt ~ Oz dt Oy dt
as required.

A special case arises from specifying a path by y = y (). Then, along this path, we have

df _of ofdy
de Or Oydx

Remark. If we add more variables, the chain rule is extended simply by adding more terms to the sum.
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Soif f = f(x1,za, - ,2,) we would discover, for example, that

df _ 0f dvy | Of dwy | Of da,
dt Oz, dt  Ozp dt Ox,, dt
Oue very useful way of looking at this expression in general is to look at the vector x = (x1, 29, ,x,),

and to realize that if we had some other vector

_(9f of . Of
V= Ox,’ Oxy’ ' Oxp

then we could simply write the chain rule as a dot product, making it look much more like the original

chain rule:

df ) dx
dt 0 dt

This is exactly what we do in the next section.

2.2 Two-Dimensional Calculus

In this section, we see how some key ideas to do with differentiation from basic calculus carry over to

a higher dimensional case (though we only work with two dimensions for simplicity).

2.2.1 Directional derivatives

Consider a vector displacement ds = (dz,dy) like that shown as the arrow in Figure 2.1. The change
in f (z,y) over that displacement is
of of
df = Z=dr+ =d
/ oz " dy 4

of 0
= ds-Vf

where we define V f (which we read ‘grad f” or ‘del f’ - the symbol is a nabla) to satisfy this relationship:

Definition 2.5. In two dimensional Cartesian coordinates,

of af)

gradf =V f= (ax’ 9y

Remark. Note that (Vf) (z,y) is a function of position, or a field - since V f is a vector, it is a vector
field.

Note that if we write ds = §ds where |§] = 1 so that § is a unit vector, we have

df
E—S'Vf
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which is the directional derivative of f in the direction of 8.

This gives us the striking relationship
d
’f = |V f|cost
ds

so that the rate of change of f at a point varies exactly like cos 8 as we look in different directions at
angle 6. We can make a few observations based on this:

(i) maxy % = |V f] so Vf always has a magnitude equal to maximum rate of change of f (z,y) in

any direction.

(ii) The direction of V f is the direction in which f increases most rapidly - hence ‘V f always points
uphill’.

(iii) If ds is a displacement along a contour of f, then by definition

d
—f:() ~— §-Vf=0
ds

<=V is orthogonal to the contour

so contours correspond exactly to lines at right-angles to the gradient V f.

2.2.2 Stationary points

The last point we noted above tells us that there is always one direction in which % is zero - but what

about true maxima and minima?

Local maxima and minima must have % = 0 in all directions:

§Vf = 0 V8

~— Vf =0
of _of _
@%—ay = 0

This is probably not a very surprising result, but like the idea of a one-dimensional stationary
point, it is fundamental.

The cases of a local maximum and a local minimum are displayed in Figures 2.2 and 2.3 respectively,
along with the contour plots for the shown surfaces. Note that at a two-dimensional local maximum,
the function is at a maximum in both the x and y directions, and vice versa - similarly for minima.
However, we get an interesting new case when the function is a maximum along one direction, and a
minimum along another. This case is shown in Figure 2.4, and is one example of a s-called saddle point
- this generalizes the idea of the one-dimensional case of a curve which is stationary without being an

extremum of any kind (like at x = 0 for the curve y = 23).
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(a) Surface

Figure 2.2: An example of a local maximum

(a) Surface

Figure 2.3: An example of a local minimum
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(b) Contours




(a) Surface (b) Contours

Figure 2.4: An example of a saddle point

2.2.3 Multidimensional Taylor series

Once we have developed ideas of directional differentiation, and looked at finding stationary points,
it is natural to try to extend the idea of using the second derivative to classify these points as shown
above. Since we formally deduce the nature of stationary points in the one-dimensional case by looking
at the second-order terms in the local Taylor series for the function about the point, it will be useful

to have an expression analogous to

1

F@)=f(a)+(@=a)f () + 5 (@—a)* f" (@) +

Therefore, we will now deduce an expression for the Taylor series of a function f (x) for a vector
x (thinking mainly of the two-dimensional case, though the same process extends easily to higher
dimensions). Then, in section 2.2.4, we will discover how to actually classify these points.

Since we have no techniques for dealing with vector series yet, it is natural to work in the case
we already know about: the behaviour of f(x) along an arbitrary line x¢ + s§ through the point
zo. Consider a small finite displacement ds = (Js)$ along this line. Then the Taylor series for

f(x) = f(x(s)) along this line is given by

2
)= Fxotds) = fxo)tasSh s ST
= f(x0)+(ds)8-Vf+(ds)° (8- V)(§-V)f+
= f(x0)+(0s)8-Vf+(8s) (8- V) f+
where o7 of
(§s)éon:5z%+5ya—y
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and

(657 (6 V)’ f = <5s>2-[ 0 6]2f

ng + Syaiy
0% f 0% f 0% f 0% f
_ 2 207 | 4o A A 207
= (ds) {sm 92 + 558, 920y + Sys"pi@y@x + 5, RIE

(02)° foz + (62) (8y) fya + (3y) (62) fuy + (69)° fyy

(0 9
V:<3$’3y>

Remark. Note that the power of two after the operator [5,0/0x + §,0/0y| indicates that it is applied

recalling that

twice, not that the result is squared.

To simplify this expression, it is natural to take advantage of the new vector notation we have

for for) (6
(0 50) <fw f) (65)

0s-(VVf) ds

fyx fyy

is called the Hessian matriz of the function f.

adopted, and write this last term as follows:

(0s)?- (8- V)* f

Definition 2.6. The matrix

Remark. We do not write V2 f for this matrix because this notation has a special meaning; it is the

Laplacian V - (V f) which is a scalar, not a matrix.

Thus in coordinate-free form we have the Taylor series
1
f(x)= f(x0)+5x~Vf(xo)+§5x~ [VV/f]-0x+---

For the case of two-dimensional Cartesian coordinates, with continuous second partial derivatives,

we can write

f(zy) = [(zo,y0) + (x —x0) fo + (Y — v0) fy
5 [ = 200 fre 42— 20) (9~ 90) Fo + (0~ 90)° o]
+...

With this expression, we can move on to work out the behaviour of f near a stationary point.
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2.2.4 Classification of stationary points

Obviously, near a stationary point, by definition V f = 0. Therefore, the behaviour of f is given by
1
f(x) :f(X0)+§5X'H~5X+"‘

where we have written H = V'V f for the Hessian.

In this section, we will not consider the cases where second derivatives vanish - therefore, the
properties of the matrix H are all that matter.

At a minimum, we must have f(x) > f(x¢) for all sufficiently small 6x, regardless of which

direction éx points in - that implies that
ox-H-dx>0 Vix#0

noting that the magnitude of dx is irrelevant to the sign of the result. Similarly, for a maximum
ox-H-dx<0 Vix#0

and at a saddle point, §x - H - §x takes both signs.

These properties of the matrix are given names:

Definition 2.7. If viAv = v - (Av) > 0 for all vectors v not equal to the zero vector, then the
matrix A is said to be positive definite. We sometimes write A > 0.

If viAv < 0 for all v # 0, then A is said to be negative definite. Similarly, we sometimes write
A <0.

An indefinite matrix A is one for which vectors v and w exist with

viAv > 0> wiAw

In order to understand how we can find out whether a matrix is positive definite etc., it is helpful

to first consider the case f., = fy» = 0, so that the matrix A is diagonal:
a o [fe 0
0 fyy

= (7))
vy

= fiz (§$)2 + fyy (5y)2

In this case, it is clear that viAv is always strictly positive for v # 0 if and only if f,, > 0 and
fyy > 0. Similarly, A is negative if and only if f,, fyy < 0, and indefinite if one is negative and the
other positive. (This is where we omit the case of a zero on the diagonal - we would have to consider
higher-order behaviour in that direction in order to make any useful deductions.)

It is interesting that, in this case, only the behaviour of f along the two lines f (z,y0) and f (zo,y)
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is relevant - knowing the values of the second derivative along the axes allows us to deduce this value
along any other axis, just like in the case of V f and the first derivatives. It is natural to wonder whether
there is in general a single pair of numbers (or a single pair of axes) associated with the matrix that
determine whether it is positive definite and so on - in fact, there is a natural generalization of this to
eigenvalues and eigenvectors.

Since A is real and symmetric (if f;, = fys), it can be diagonalized (see the course on Vectors and
Matrices - this is the spectral theorem) as it has a full set of orthogonal eigenvectors with associated

eigenvalues )\;. In the general case, writing vectors in the basis of eigenvectors, we always have

z 0 0 ox

0o X, --- 0 oy
bx-Hox = (0r dy--62) !

0 0 - ) \s

= X (02)2+ 0, (0y) + -+ . (62)

so we have the following key result:

Lemma 2.8. H is positive definite <= all eigenvalues \;,--- , X, are positive. Similarly for the

negative definite case.

In order to avoid having to explicitly work out the eigenvalues of the matrix each time we do this,

the following result, called Sylvester’s criterion, is very useful:

Lemma 2.9 (Sylvester’s criterion). An n x n real symmetric! matriz is positive definite <= the
determinants of the leading minors, or the upper left 1 x 1, 2 X 2, ---, and n X n matrices, are all

positive.

So for example, in the case of a two dimensional Hessian with non-zero determinant (so it has no

zero eigenvalues), to test for a minimum it is enough to test that f,, > 0 and

| famc facy :faca:fyy_fa:y.fya:>0

fy;v fyy

Similarly (as can be seen by just negating the entire matrix H) the matrix is negative definite if
and only if the first determinant is negative, f,, < 0, the second is positive, and so on in an alternating
fashion. Finally, any other pattern than ++ + +--- and — + — + - -+ results in an indefinite matrix.

Combining these results, we have:

Theorem 2.10.

LOr more generally, Hermitian.
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FHtto

other

Example 2.11. Find and categorize the stationary points of the function
f(x,y) =823 4 222y — 2ty* — 2 — 62
First, we calculate the two first partial derivatives

fa 2422 + day® — 423y — 6

fy

dz?y — dxty3

so that the gradient is

2422 + 4xy? — 423y — 6
V= ( 2 4,3
daty — 4x*y

To find the stationary points, we need to solve V f = 0. From the f, = 0 equation we have

4Py —daty® = 0
4’y (1—a2%?) = 0

and therefore (z,y) = (0,7),(7,0), (z,2), (z,-1).

z=0: fz = —6 = 0. No solutions.
—0- _ _ ; _ 1
y = 0: fo =242% — 6 = 0. Solutions z = +3.
(z,%):  fo=2422 441 —41 —6=0. Solutions z = £5 and y = £2.

(z,—1):  fo=242%+41 — 41 — 6 = 0 again. Solutions z = +3 and y = F2.

Hence the six stationary points are located at (:l:%,()), (j:%, :tQ) and (:I:%, :|:2).
Now to classify these points, we must calculate the Hessian:

fin fyy

_ 48z + 4% — 122%y*  Sxy — 1623y>
B 8xy — 162333 422 — 12212

_ 120 4 y* — 32%y*  2zy (1 — 22%y?)
B 2zy (1 — 2x2y2) x? (1 — 3x2y2)

Hence we have:
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(3,0): Here

6 0
H=4(
0

which is clearly positive definite, so this is a minimum.

o600
U

which is clearly indefinite, so this is a saddle point.

-2 =2
nea( )
-2 -1

which has f,, < 0 and a determinant which is also negative, and so is also indefinite,

—2 2
H:4< 1)
2 =3

which again is indefinite, so this is a third saddle point.

(f%, O): Here

(%,2): Here

and hence this is a saddle point.

(L,-2): Now

(,l 2): This time

which has f,, < 0 and a positive determinant - hence this is negative definite, and the

-14 -2
-2 -1

which is also negative definite, corresponding to a maximum.

point is a maximum.

(— 1 —2) : Finally

Remark. We could have saved time by noting the symmetry of the function under y — —y; the layout

and character of stationary points must also be symmetrical across the z-axis.

In fact, this gives us all the information needed to make a sketch of the contours. Note that near

a stationary point, the Taylor series tells us that the function is approximately of the form
~ 1 2 2
f(x) = f(x0) + 3 (0x1)" A1+ (6x2)" A2
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with respect to the principal axes (the eigenvectors) of the Hessian. So the contours are solutions of

constant

£ = (o) + 5 [0 M + (522 e
(621)* M\ + (622)* A2 = constant

But clearly if A1, As both have the same sign, these are simply ellipses, rotated between the principal
axes and the standard axes; and if they have different signs, then these are hyperbolae.

Having drawn the local behaviour of the contours near all stationary points, we must then fill in
the space (and join up the hyperbolic lines) without creating any new stationary points - that is, no
more contours must cross, and no more closed loops may be formed.

The actual contours and a three-dimensional plot of the function are shown in Figure 2.5.

o

(a) Contours (b) Surface

Figure 2.5: Classification of stationary points

2.3 Change of Variables

A very common task in mathematics is to transform the way we write down a problem via a change
of variables. As with the chain rule, we already know how to deal with this in the single-variable case,
because this is precisely the chain rule! We let f () = f (2 (¢)) and then

df _df do

dt  dz dt
SO df

a:%/%
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which is usually easily calculated as a function of ¢.
The multiple dimensional case, as might be expected, requires the multi-dimensional chain rule.
For example, if we wrote x = x (r,0) and y = y (r,0) as we would when converting from Cartesian

coordinates (x,y) to polar coordinates (r, ), then we would have f as a function of r and 6:
f= f(:L'(T,@) ,y(r,@))

Then the chain rule would give us

af
or

oo
, Oz or

of 9
g Oy Or

0

where we have explicitly stated, when taking the partial derivative of f with respect to r for example,

that we are not holding = or y constant, but instead the accompanying variable 6.
Example 2.12. If f = 2y and « = rcosf and y = rsin6, then
f=r?sinfcosf

and clearly

g = 2rsinfcosf
or |,
We can check the chain rule:
o1 _ of va| L 0f oy
or |, Oxr Or|, Oy Or|,

= y-cosf+x-sinf
= rsinfcosf + rsinfcosf

= 2rsinfcosf

as expected.

2.4 Implicit Differentiation and Reciprocals

One of the other things we can now generalize is the idea of implicit differentiation. Classically, this

means that we have an expression like

F (z,y) = constant

and we deduce that % = 0 for instance, using the chain rule to calculate

d dy
dr (zy) —y—l—x@

and so on.
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Now imagine a surface in three-dimensional space, specified by
F (z,y, z) = constant
over space. We can write this as
F (z,y,z(z,y)) = constant

though this is a slight abuse of notation because z (x,y) is not necessarily single-valued there may be
multiple points above and/or below the point (z,y,0) in the zy-plane.

The differential form of the chain rule (again best used as a mnemonic) is

OF OF oF

Then at any such point, by the chain rule, we get

oF
or

_OF Ox

OF x| | OF 9y
y_(‘?x ox

oF oy| | OF 0:
dy Ox

9z Oz

Yy Y Y

where the terms like OF/Ox have both y and z held constant. Clearly,

Lly
and
9yl _
or y
so this gives us
OF| _or  OF 0:
Ox y T Oz 0z Ox Y
and hence
% _ BF/BI
oz g aF/Bz

where both terms on the right have the variables not involved held constant (so y, z for the top term

and z,y for the bottom term).

It is very important to note the introduction of the negative sign here: there is mot a simple
algebraic manipulation giving rise to this relationship (‘cancelling the OF terms’ for example).

These give rise to the interesting relationship that for any 2D surface in 3D space,

o
Jy

Jy

, Oz

0z

=1
L O

Y

Reciprocals

In the same sort of way that the above negative sign confounds our expectations from single-variable

theory, the rules for inverting partial derivatives are not entirely obvious.
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The normal reciprocal rules do hold provided we keep the same variables constant.

For example, in the transformation (x,y) — (r,0) we have

o, 1
ox 696/67«

because on the left hand side we are assuming that y is held constant, whilst on the right hand side

we are assuming that 6 is held constant.

The correct statement would be
or 1

6733 y n 393/6r\y

which is an altogether different statement. The meaning of the term on the bottom of the right hand
side would be ‘how fast does x change as I increase r at a steady rate, given that I also adjust € so

that y remains constant?’

Example 2.13. To see this explicitly for the case of polar coordinates, write x = rcosf and
y = rsind so that r = /22 + y2 and 0 = tan~! (v/z). Then

or
ox

T

) o /22 + 2

rcos

r
cos

and
ox

Oz 0 (rcos )
or

or

Yy Y

and if y = rsin6 is constant, then sinf = £ so cos = 4/1 — (%)2 Hence we can calculate

o (r/1-®7)

or

Oz
or

Y
Y




as required. By contrast,

2.5 Differentiation of Integrals with Respect to Parameters

Consider as family of functions f = f (z,¢), for which we have a different graph f = f. (x) for each c.

Then we can define a corresponding family of integrals,

b
I(b,c):/o f(z,c)dx

Then by the fundamental theorem of calculus,

o1

% :f(b’c)

To calculate the rate of change with respect to ¢ we do the following:

1 b b
512&1(]66[/0 f(:c,c—i—éc)d:c—/of(x,c)dx]
_ . bf(l’,C#’(SC)*f(x,C)
= lim [/0 5e dz

ol
Oc

dc—0

- /Obgi

assuming that we are allowed to exchange limits and integrals like this (this result is actually always

dx

x

valid if both f and 0f/0c are continuous over the region of integration [0, b], and the region of ¢ in

which we take the derivative?).

So if we take

then we get, via the chain rule,

i o1y orde
dz ~ 9bdx  dedzx
baf
— fr @@ [ G
0 8Cy

2This result is called the Leibniz integral rule, or Leibniz’s rule for differentiation under the integral sign. A sophis-
ticated result called the Dominated convergence theorem gives the general case for a more sophisticated type of integral
called the Lebesgue integral (we are using the Riemann integral).
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For example, if I (z) = fow f (z,y) dy then

ar * of
a—f(x,xH/o o ay

Y
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3 First-Order Equations

In this section, we will consider both differential equations and difference equations (also known as
recurrence relations) of the first-order, in which no more than one derivative, or one previous term of
a sequence, appears.

It will be very useful to have a firm grasp of one particular function:

3.1 The Exponential Function

Consider f (z) = a®, for some constant a > 0.

The rate of change of such a map can be calculated as follows:

df o aa:+h —a” . a® (CLh _ 1)
de K50 h I =
h—1
= " lim
“ h—0 h
= a®- A\

for some constant A (independent of ) - note that this limit must converge to some value, since this

map is obviously differentiable?.

Definition 3.1. The function exp z = e? is defined by choosing a so that A =1, i.e. % = f. We
write e = a for this case.
Remark. Let the inverse of the function © = e* be given by # = Inu. Then if we write y = a® = e*!n@

it becomes clear via the chain rule that

% = (Ina)e®m@
= (lna)a®
- (ma)y

so that A = Ina.

One other limit we will make use of is

lim (1 + f) — "
n— 00 n

Exercise 3.2.

(i) Prove that, for = > 0,

(Hint: Use the inverse function rule.)

3We do not show this formally in this course - in Analysis I we consider a® to be defined in terms of e, and define
e® in terms of its power series e* =1+ + %IQ + %x;” + .-+, and derive all of these properties from here.
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(ii) Write down the first few terms in the Taylor expansions of e” and In (1 + z).

(iii) Use the Taylor expansion of the following expression to evaluate it:

lim In (1 + E)n
n

n—oo

(iv) Why does it follow that
lim (1 + f) =e"?
n— oo n

Using the fundamental theorem of calculus, and the first result from this exercise, we have that
b
1
/ —dz=[n x]z
. T

Now if @ and b are both negative, then we can compute the integral either by symmetry, or formally

if a and b are both strictly positive.

by the change of variables u = —x,

/ab;dx - /_b(_lu) (-1) - du
[

In(—=b) —In(—a)
In|b| — In|al

= [zl

Because of these two facts, we commonly write

1
/fdx:1n|x|
x

However, this assumes that « does not change sign or pass through 0 over the region of integration

- if it does, then the integral is undefined.

b
/ ldaczln (b>
o T a

which is valid for the same a and b but which avoid using the modulus signs |z|. A very useful result

A better way of writing this is

which holds in general for valid complex paths (not passing through 0) is that

b

Example 3.3. Both integrals in

2 —2
/ Mz = / z l'dx =1n?2
1 -1



are defined, but

is not.

3.2 First-Order Linear ODEs

It is often best to begin a new topic with an example, so that is exactly what we shall do.

Example 3.4. Solve 5y — 3y = 0.

We can easily solve this equation because it is separable:

v _ 3
Y 5
dy 3
—= = —dt
/y /5
3
Inlyl = gt—&-C
y = De%t

This is the only function of this form. y = Ae®>* is a solution for any real A, including A = 0
so y = 0. In this family of solution curves, or trajectories for one-dimensional cases like this, it is
possible to pick out one particular solution using a boundary condition, like y = yy at z = 0, so
that A = yo.

In fact, there are no other solutions. To see this, let u (t) be any solution, and compute the

.. _3
derivative of ue~5t:

It is a key result from our fundamental work that ue~ st

is therefore a constant k, so indeed
u = ke3' as required. It follows that there is a unique solution if we are given a boundary condition

like those above.

It is not hard to guess, from the way that the numbers 3 and 5 appeared in our solution, that any

M and in fact all solutions are of the form ke*. In fact,

similar equation has a solution of the form e
any linear, homogeneous ODE with constant coefficients has families of solutions of the form e*. We

will define what all of these terms mean:
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Definition 3.5. An nth order linear ODE has the form

dn
e (2) T + i (@)

dnfly

W+-~+cl($)%+co(x)y:f(m)

dx

A homogeneous equation has f (x) = 0 so that y = 0 is a solution.
A linear ODE with constant coefficients has ¢; (x) = ¢; (0) = constant for all i.

There are a few important properties of such equations. The following two are the most important

for us:

(i) Linearity and homogeneity mean that any multiple of a solution is another solution, as is the sum
of any two solutions - that is, any linear combination of solutions is another solution. (Hence
functions like y = AeM® 4 Be*2® + ... will always be a solution if the corresponding basic terms

are.)

(ii) An nth order linear differential equation has (only) n linearly independent solutions - that is,
given n + 1 solutions we can always rewrite one of them as a linear combination of the others.

(Recall y = Ae”/** was the general solution of the above first-order equation.)

The first fact is easy to prove, whereas the second is not obvious. We will begin to see how to talk
about independence in section 4.3, and prove in section 6 all the results we need about solutions to
higher-dimensional equations. For the case of first-order equations, we will briefly discuss existence
and uniqueness of solutions in section 3.7. For now, however, we will leave these ideas to one side.

It is, however, useful to see why the solutions can be expressed in exponential form. The key idea is
that of an eigenfunction of a differential operator (which is basically the left-hand side of the above).

For our purposes:

Definition 3.6. A differential operator D [y] acts on a function y (x) to give back another function

by differentiation, multiplication and addition of that function - for example

d?y
Dy = Tz 3y.

An eigenfunction of a differential operator D is a function y such that
Dyl =Xy

for some constant A, which is called the eigenvalue.

Remark. The idea is very like that of eigenvectors and eigenvalues of matrices.

Az

The important point to realize is that y = e** is an eigenfunction of our first-order linear differential

operators with constant coefficients, because

d
ae)\x _ )\6)\1

38



So in solving ay’ + by = 0 all we need to do is solve
(aX+b) M =0

which gives

as we found above.

All we are really doing in solving these unforced equations is trying to find eigenfunctions with

eigenvalue 0, to give the zero on the right-hand side®.

3.2.1 Discrete equation

The above equation
5y —3y =0

(say with the boundary condition y = yo at = 0) has analogous discrete equations in the form of
difference equations, where we solve for the values of some sequence y, meant to approximate y at
time steps like y,, = y (nh).

The so-called (simple) Euler approzimation substitutes y > y,, and y’ > 25— where we take

discrete steps of size h, giving = nh.

This gives us

Yn+1 — Yn
5F——— — 3y, 0
A Y
3h
Yn+1 = 1+ g Yn
Yn = (

Using our equation for the step size, we note h = £ so that we can eliminate i and return to having

3x\"
=y, = 14+ ==
y(z) =y yo( +5n>

a dependence on

and if we now take the limit h — 0 or equivalently n — oo, so that we refine the step size, we retrieve

. 3z 1\"
v = i (145 1)
3z
= yoes

which is the same as the equation we originally established (see 3.2). This is not very surprising, because

the limit A — 0 corresponds, in the equation we are solving, to the limiting equation 5% —3y=0.

41f you know some linear algebra (like the material from the Vectors & Matrices course), then you might find it
interesting to think of this as trying to find a basis for the kernel or null-space of the differential operator D.
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3.2.2 Series solution

Another way of finding a solution (if a solution of this form exists - see the section on series solutions

later in this course) is to assume
o0
y = g anpx”
n=0

so that we also have

0o
y/ _ E annznfl
n=0

Now if we take our equation 5y’ — 3y = 0 we note that we can rewrite this as
5(xy') =3z (y) =0

(the equidimensional form of the equation, in which the bracketed terms all have the same dimensions,
with derivatives with respect to = balanced by multiplications by z - though now we have non-constant
coefficients) and hence the equation becomes
Zan [5nx S 3 x”] =0
Z anz [Bn—3z] = 0
Now in this equation, since the left side is identically 0 for all z, we can compare the coefficients of

™. This gives

5n-a, — 30,1 =0

for all n including n = 0 (if we write a_; = 0).

n=0: The first equation we get from this is that 0-ay = 0, which symbolizes the fact that we may

consider ag to be arbitrary - remember we have a constant A or yo in our other solutions.

n > 0O: In this case, we can divide through by n to obtain
ap = ia
n En n—1
_ 3. _3
" Bn 5(n—1) "2

O (3\" 1
= (5]

) n
3\" 1,
yZ”OZ<5> T
n=0

which is a valid expression for the solution. However, in this case, we have the good fortune to be able

Hence we have
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to identify it in closed form:
oo n
1 /3z
yo= m) <5>
n=0
3z
= qqpes

Remark. In general, there is no reason to expect a closed-form solution, so the previous expression

would suffice as an answer.

3.3 Forced (Inhomogeneous) Equations

There are a few ways to classify different forcing terms f (z). We will look at 3 different types of
forcing for equations with constant coefficients in this section:
(i) Constant forcing: e.g. f(x) =10
(ii) Polynomial forcing: e.g. f(x) = 3z —4x + 2
(iii) Figenfunction forcing: e.g. f(x) =e”
We will solve each case with an example to illustrate how to handle these problems.

Remark. We will see in section 4.4 (which treats the second-order case) and later in 6.5 (which is
the general treatment) that there are ways of solving any problem with an inhomogeneity with some

cleverly chosen integrals.

3.3.1 Constant forcing

Example 3.7. 5y’ — 3y =10
Note that there is guaranteed to be a steady or equilibrium solution, in this case given by the
particular solution (PS) y, = —10/3, so that y,, = 0.

It turns out that a general solution can be written

Y="Yc+ Yp

where y. is the complementary function (CF) that solves the corresponding unforced equation - so

. 3z .
since we already know y, = Ae™s , we have a general solution of

The boundary conditions can then be applied to this general solution (not the complementary

function).

So the general technique is to find the equilibrium solution which perfectly balances the forced equation,

and then add on the general solution. This approach is actually fairly general.
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3.3.2 Polynomial forcing

Example 3.8. 5y — 3y = 322 — 42 + 2

It is hopefully clear that there is no constant solution to this equation, since the left-hand side
must vary to give the polynomial behaviour on the right-hand side. But the above approach is
suggestive: could we find a quadratic to match the right-hand side?

Let us assume y, = ax? + bz + ¢ is a solution to this equation. Then
5y' — 3y = (—3a) z* + (10a — 3b) z + (5b — 3¢)

so comparing coefficients,

—3a = 3
10a —3b = -4
50 —3c = 2
which can be easily solved to give
a = -1
b = -2
c = —4

Thus
Yp = —(;v2—|—2x—|—4)

is a particular solution, and the general solution is

yer%z—(arQ—&—Qx—i—éL)

This approach is easily extended to any polynomial - we just come up with a trial solution (sometimes
called an ansatz, basically just an educated guess) which is a polynomial of the same order as the

forcing term, and solve to find the right coefficients.

3.3.3 Eigenfunction forcing

One other type of problem we commonly get involved a forcing term which is actually an eigenfunction
of the differential operator. We shall investigate this via a practical example, taking the opportunity

to demonstrate the process of converting a physical problem into a differential equation.

Example 3.9. In a radioactive rock, isotope A decays into isotope B at a rate proportional to the
number ¢ of remaining nuclei of A, and B decays into C' at a rate proportional to the corresponding
variable b. Determine b ().
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We have two time-varying variables, a and b. We know exactly how a varies over time, since we
can write its evolution via a simple homogeneous differential equation whose solution we know, by

introducing a positive decay constant k, controlling how fast the A — B reaction occurs:

da
— = —kqa
dt ¢

a = age el

where we have written a (0) = ao.
The equation for the evolution of b is more complicated, because it explicitly depends on the
evolution of a - introducing a new decay constant k;, we obviously have a —k,b term in &', but we

also have b increasing at the same rate as a decreases. Hence:

db
R A
i @

db
E—i_kb = kaaoe_kat

Now we know that the forcing term is an eigenfunction of the differential operator on the left
hand side, and so we can try to find a particular integral which is a multiple of this function, with
a coefficient determined by the eigenvalue. That is, we guess

b, = De "t
Then if b, is a solution of the above equation, we can cancel the e ka? terms to be left with

—koD + kD = kgao
D(kb—ka) = kaao

Now obviously we have a problem if k;, — k, = 0, since then this equation has no solution unless
k, or ag is zero (both of which correspond to trivial cases of the problem).

Assuming ky, # k,: we can determine b via the complementary function b, = Ee~ % with

b(t) = by+be
ka
= % age Fat + Be kot
b — ha
and if b =0 at t = 0, we have
b(t) = Fa a (e_kat — e_kbt)
kb - ka ¢

Note that we can also determine from this the value of b/a over time without knowing ao:

g = T kak [1 - ethamhor]
- a
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However, we can see there are some in which this sort of approach does not work in quite the
expected form - what happens if we have to produce a term which the differential operator annihilates?
By this, we mean, for example, trying to solve the above problem with kj, = k, - then the b, = De~*at
guess will lead to a 0 = f(¢) equation, with the adjustable parameter D disappearing. A simpler
example would be solving an equation where like y' — y = ¢* where we know that the forcing term e*

is an eigenfunction of ¥y’ — y with eigenvalue 0.

3.3.4 Resonant forcing

When we come to see second-order differential equations, we will see that this sort of forcing leads to
what is called resonance in oscillatory systems - a system which would normally behave like a sine
wave, for example, which is forced at its own frequency can be made to have the size of the oscillations
grow over time. Mathematically, however, the same approaches to solving this problem can be used
for any order of equation.

The main method we will demonstrate involves detuning the original equation, so that it has an

eigenvalue A very slightly different from zero, and then letting A — 0.

Example 3.10 (Detuning). Find the general solution of ' — y = e* by detuning the equation.
The first step here is to substitute the forcing term with e**1* where we think of x as being

very small but non-zero. We then want to find the particular solution for this term equation, which
we know how to do:

— Delptbz

Hence

Now to take the limit as g — 0 of this is not possible, since % — oo and e** — 1, so it has no

limit. In terms of the Taylor series in p,

1 1
ZehT L ot M_1(1+M$+M2952+"'>'€r
W 2

pole” +a e +o(n)

But note that when we picked out a particular solution, it was fairly arbitrary that we assumed it

was of the form De(#+t1% _ we can easily add arbitrary multiples of solutions to the complementary
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equation. In particular, it is clear that

is a solution, since e* solves the above equation. Then we have that
y = e + o0 (u)
is always a solution to the above equation, and as this suggests, as © — 0 we have a solution ze”:

(ze®) —ze® = (ze®+ €®) — xe”

= e*

as required.

In fact, this is the embodiment of a general principle - say we have any first-order equation
ay' +by = f(z)

for a, b constant, where f (z) is a multiple of y., a solution of the complementary equation. Then note
that

a(z'yc)/+bx'yc = ayc+a$y;+bx'yc

z (ay,, + bye) +ay.
—_———

0
= a¥Yc

Now if this is really a first-order equation, a # 0, so if we have an equation forced by the eigen-

function y., then we can find a general solution by adding on some multiple of x - y..

Remark. As noted at the start of this section, section 6.5 on the general method of variation of

parameters gives us a general proof of this.

Example 3.11. Find the general solution of 2y’ + 6y = 3 (6*3”5 + 639”).
Note that the complementary function solves 2y’ + 6y. = 0. Hence y. = Ae™3".
Now for a particular solution, we can guess a solution of the form c - ze™3% 4 d - €3 because

e~ solves the complementary equation:

2 +6y = 2ce 3 — Gexe 3 + 6de>”
+6cze 3% + 6de>”
= 2ce 3% 4+ 12de®*
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Thus comparing coefficients, we choose ¢ = % and d = % to obtain

1
—390 4+ 3z

2 e
2"
) —3:c -

y = A—Sz

-

N’\C&J +

3.4 Non-Constant Coefficients and Integrating Factors

In this section, we will consider methods for handling first-order linear equations with non-constant

coefficients. The general form of such an equation is

a(x)y +b(x)y=c(x)

We put such an equation into standard form by eliminating the coefficient of ¢’ - that is, by dividing
through by a (z):

v +p@y=/()]

There are a various techniques which can be applied to these problems. A frequently very useful

approach is to reduce it to a problem with constant coefficients. To do this, we could attempt to define
a new variable z so that we can write this equation in the form 2’ = g (z), eliminating the mixed term
p (z)y. This method is called using an integrating factor.

Consider a new variable z (z) = p () y (). Then

wy' +p'y
p(f (@) —p(x)y)+u'y
wf (@) +y (p' — pp ()

w
Il

which is in the required form if and only if

du

azﬂp

But this is a separable equation: we can integrate it as follows:

1du
ud:z:

1dp

dx = dx

/px /udx
I

= Injul+C

p =

Then we have an explicit expression for a suitable p (noting the arbitrary multiplicative constant
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arising from the additive one in the integral) in the form

n= Ael pde
Now we have
2= uf
z=py = / pfdx

so we have a solution

vie) = [ ufda

where we can take

plx) = el P

Example 3.12. Solve the equation zy’ + (1 —z)y = 1.

The first stage in solving these equations is to put them in standard form, which gives
1 1
x x

T ef(%—l)dx

eln rz—xz+C

Hence, using an integrating factor

= Aze™®

where for completeness we have included the constant A = e®. (It cancels at the next stage.)

Hence we have
—Xx —T 1
Aze ™%y = /Aa:e T. —dz

z
e Ty = /e‘zdx

= D—-¢e"
with final solution
1
y = —[De"—1]
T
_ D .1
T T

Remark. Solutions where the leading coefficient a () has a zero at some point - as in the above

example, where a (z) = x which is obviously zero at = 0 - often exhibit singular behaviour at these
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points (something investigated again in 4.6). For example, the above equation has solutions whose
value goes to +oo as © — 0.
In fact, if we demanded a solution that was finite everywhere, then we would be forced to take

D =1, as only then do we get
e’ —1

X

y= —-1 as z—0

3.5 Non-Linear Equations

An even more general class of first-order equations allows the coefficients of % and y to depend upon
y as well as x.

The general form of such a non-linear equation is

Q(w,y)%JrP(Ly) =0

where we have no apparent ‘forcing terms’ as P (x,y) can absorb them all (note P is constrained to
be a multiple of y, as we can just multiply by %')
As we have already seen in deriving the method of integrating factors, one class of equation can be

easily solved:

3.5.1 Separable equations

The equation is separable if it can be rewritten in the form

dy _

I =p(x)

q(y)

or perhaps more memorably (in differential form)
q(y)dy =p(z)dz

If both expressions are integrable, then this can solved by integration of both sides as we saw above:

[r@a = [a) e

- /q<y>dy

although we do not necessarily get an expression for y in terms of = (this depends on whether we can

invert the function which appears upon integrating q).

Example 3.13. Solve

Sy
dx =Y
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Away from x = 0 we may write

dy y? =1

dx T

and away from y = +1 we have
1 dy 1
y2—1 dz =
and then we need to perform two integrations: [ %dx and [ yz—l_ldy.
Note now that we must separately note the two constant solutions, ¥y = 1 and y = —1, which
both satisfy the original equation.

The second integral is usually calculated by the method of partial fractions: we write

1 B 1

y? -1 Y+ -1
A B
B y+1 y—1

and it can be found that A = —1/2 and B = 1/2.

So for ranges where y does not pass through +1, we have

1 1 1 1
L ay = = |——— 4|4
/y2—1 Y 2/{ y+1+y—1] y

1
= 5l-lly+1+nly—1]

1 ‘y—l
= —In|¥——
2 |y+1
and so we have ) )
y—
—In|Z=——|=1 C
2n‘y+1 n|z| + C4

Note that the term in the modulus symbol on the left can only change sign at y = £1, and similarly
at x = 0 on the right. So in any region where our analysis is valid, this equation is too.

Now in this case it is actually possible to rearrange this into an equation for y:

y—1
In = 2Inl|z|+ C
] ol + o
= Inz?+C,
Then we have 1
Y :|Cg|.’172
y+1

Now we can also drop the other modulus signs by allowing Cs5 to have arbitrary sign:

-1
L = ji|C3|!L‘2
y+1

= 033?2
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S ———

Figure 3.1: Solutions to Example 3.13 for D = —1,—-0.9,—-0.8,--- ,0.9,1 plus the constant solution
y=-1

which can be solved to get
. 1+ 03.132
v= 1-— 03502
So to summarize, there are two constant solutions, y = +1. For y in (—oc0, —1), or (—1,1), or
(1, 00), there are solutions of the form
1+ Da? 2

= = —1
y 1—Dz2 1-— Dz2

which may be joined continuously to any other part-solution at y = +1 to form a correct global
solution. (Similarly, at the singularity ‘¢ = 00’ which occurs for = D~/2 when D > 0, one
can attach any other solution, and the result will also be a correct solution everywhere except at
the singularity.) The two constant solutions along with a selection of other curves for positive and

negative D are shown in Figure 3.1.

As in the previous section where we noted singular behaviour when the coefficient of 3" was 0, we
see here that at 2 = 0 the equation reduces to 1 = 42, and hence it is no longer a first-order equation.
This behaviour results in an extra degree of freedom in the solution, corresponding to which solutions
we ‘glue’ on at = 0 (which corresponds to y = 1). (As mentioned before, some different types of

singularity will be discussed in section 4.6.)
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Note that because the original equation was invariant under the transformation z — —z, for any
solution y (x), the reflection y (—) is also a solution. Similarly, because x only appeared in a so-called
equidimensional term x - dy/da which is invariant under 2 — ax for any a # 0, for any solution y (),
the horizontal rescaling y (ax) is also a solution if a # 0.

Note also the asymptotic behaviour as x — doo - apart from the unstable solution y = 1, which
other solutions tend away from as |z| grows, all solutions will converge in this limit to y = —1, a stable

solution. We will consider this type of behaviour in section 3.6.

3.5.2 Exact equations

There is another wide class of first-order non-linear equations which can be solved reasonably straight-

forwardly. The equation

Q) L+ P,y) =0

is said to be an ezact equation if and only if the differential form

\Q(x,y)derP(x,y)dx\

is an exact differential df of some function f (z,y).

If so, then the differential equation implies that df = 0, so f = C is constant, which gives us an
implicit relationship between x and y - that is, the solution.

Formally, we want to know that given any path (z(t),y(¢)) in the zy-plane which satisfies the
equation, then the function f (z(¢),y (t)) is constant along that path. Hence, by the chain rule,

df _ofde  ofdy _

dt ~ Oz dt ?ydt_o

so we want to identify

_of
Po= 5
_ of
Q—ay

Now if this is true, then assuming that f is sufficiently nice that the order of second partial

derivatives is irrelevant®, we would have

or 0% f
dy  Oyou
0Q 0%f
dr  Oxdy
and hence
oP  0Q
By Oz

5Recall Theorem 2.3 - if f has all second derivatives being continuous, then this holds.
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making this a necessary condition for Pdx + Qdy to be an exact differential of such a function f.

We will state the converse without proof here:

Theorem 3.14.

Remark. A simply connected domain is a space like the Euclidean plane, or a disc embedded in it, in
which any two points have a path passing between them (it is path-connected) and such that any two
different paths can be continuously deformed into each other. (So for example, a disc with a hole in
the middle is not simply connected, because two paths passing on either side of the hole cannot be
morphed into each other.)

If the equation is exact, then the solution f = constant can be found by integrating both expressions

_of
Po= 5
_ of
Q—ay

as we demonstrate here:

Example 3.15. Solve the equation

dy dy |
cos (zy) {y +$dx] +2 [;v ydx} =0

We can rewrite this as

(z cos (xy) — 2y) j—i + (ycos(zy) +2x) =0

and hence

(xcos (zy) — 2y) dy + (ycos (zy) +2z)dz =0

Q P
Then we can see
P
%y = cos(zy) — xzysin (zy)
(?)f = cos(zy) — xzysin (zy)
so this is an exact equation.
Hence
0
ai = ycos(zy) + 2z
fo= sin(zy)+2*+C(y)
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where the ‘constant’ term C1 is only constant with respect to x, but may vary with respect to .

Now taking the derivative of this with respect to y we obtain

o = weos (ay) + C' (1)

but since we already know that % = @ we have

zcos(xy)+C' (y) = wxcos(zy)—2y
C'y) = 2
Cly) = —y*+D

and hence
f =sin(zy) +2? —y*>+ D

Thus the final solution is given by constant f; that is,
sin (zy) + 2% — y* = constant

As we can see from the analytical solution, for large |z| or |y| the sin (zy) term becomes less
dominant, and the solutions tend towards the hyperbolae 22—y? = const. Similarly, for small |z| and
ly| the solution (working to first order in x and y independently) is roughly zy + 22 —y* = constant
which are another set of hyperbolae at a different angle. All of this behaviour can be seen verified
by visualizing the solutions.

A contour plot of f in the vicinity of the origin is displayed in Figure 3.2. Note that what we
have shown is that the solution trajectories are constrained to move along these contours, since
df/dt = 0 along any acceptable path given by varying x and y. It does not necessarily follow,
however, that any contour will give a globally valid solution to the original equation.

This is because we require it to be possible to parametrize the contour as y (z), not just as
(x (t),y (t)), so contours which ‘double back’ on themselves only satisfy the equation up until the
point they reverse direction - at this point dy/daz — 400 so we can expect to find singularities in
the original differential equation. Indeed, the coefficient of dy/dx is (x cos (zy) — 2y) which is 0 at
precisely the points where the solutions fail.

Note also that the equation is singular at the origin, as it must be since two contours cross
there! This is the same situation as we had previously, where either path leaving the origin is valid.

However, the equation is non-singular along the entire path if (z cos (zy) — 2y) # 0 anywhere
along it, a condition obeyed if |2y| > |z|, and in particular for any negative constant, as you may

like to verify.
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Figure 3.2: A few solutions to Example 3.15 near the origin, for various values of the constant.

3.6 Analysis of General First-Order Equations

In the previous section, we observed interesting behaviour of the analytical solutions to non-linear
equations. It is natural to ask whether there are any general techniques for analyzing equations
without solving them. Obviously one answer is that we use a computer to solve them numerically,
using techniques like those demonstrated in section 3.2.1, where we turned the equation into a step-

by-step process. However, this has two key problems:

e We can only numerically integrate one specific instance of a problem at a time - there may
be complicated behaviours we don’t observe because we don’t try the correct parameters. The
extreme case of this is in a chaotic system, where tiny changes in initial input result in massive

changes in the behaviour over fairly short periods.
e It may not be possible to numerically integrate the equation accurately enough to examine its

behaviour except over very short periods as the system has singular behaviour at some points.

This means that it is very useful to develop tools for analyzing an analytical problem in as much detail
as possible before resorting to numerical approaches.

We will consider the general case of an equation of the form

dy _

" = f(y,t)

Let us begin with a simple example of an equation that we can solve analytically.

3.6.1 Worked example of solution sketching
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Example 3.16. Analyze the behaviour of solutions in case
F=t(1-y)

ory=t(1-y?).
This equation is separable:

dy
= tdt
/ 1—y? /

1. 1+ t?
21n’1_z = §+C
1+y _ Aet?
I-y
Aet” —1
P |

This gives us a parametrized family of solutions depending on the variable A. We can rewrite

this as
2

1+ Ae?®

and hence sketch it for say A = 1 - we consider ¢ > 0 (treating this as a problem of evolution in

y=1

Figure 3.3: Solution curve for Example 3.16 for the case A =1

So can we understand this equation without solving it?

(i) A natural first step is to find where y = f = 0. In this case, this occurs at ¢ =0 and y = £1.
From this it follows that y = 1 and y = —1 are both solutions.

Also, if we focus on ¢ > 0, then we can actually note further that ¢ < 0 for y > 1 and y < —1,
and y > 0 for y € (—1,1).

(ii) Another very useful idea for sketching solutions and seeing how they behave is to consider
how the gradient field varies in space. One way to do this is to consider the isoclines, which

are the lines along which f is constant (i.e. the contours of f).

In this case, we have

t(l—y2) = C
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(iii)

(iv)

and hence either ¢t = 0, giving the y-axis, or

c
2

=1—- —
Y t

We can separate this into the two cases C' > 0 and C < 0, or increasing and decreasing y -

note that C' = 0 gives the isoclines y = £1 along which the gradient is 0.

(a) If C > 0, then y* — 1 from below as t grows, starting where y*> = 1 — C/t = 0; i.e. at

t = C. These lines form long ‘c’ shapes in between the two lines y = +1.

(b) If C < 0, then y? descends from arbitrarily high near t = 0 to 1 as ¢ grows.

These lines are all sketched with arrows indicating the direction of the gradient (given by C)

at that point to give a diagram like those shown in Figure 3.4a.

From the above, we can deduce that y = 1 is a stable solution, and y = —1 is an unstable
solution, by seeing that the arrows around these two lines point towards and away from them
respectively.

To sketch solution curves, we can simply join up the arrows we have drawn, and a selection

of solutions is shown in Figure 3.4b.
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(a) Isoclines with marked gradients (b) Solution curves and their intersections with

the isoclines

Figure 3.4: Isoclines and solutions (flow lines) for Example 3.16.

Note that if the function f (y,t) giving the gradient is single-valued, solution curves cannot cross. This

is because a single point on the curve is therefore sufficient to calculate dy/d¢ at that point, and the

whole solution can then be deduced by integrating away from this point.
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3.6.2 Stability of equilibrium points

A natural question to ask about a solution, in light of the points made in introducing this section, is
whether or not a small change in the value of the variables at some point decays over time, becoming
insignificant, or grows to make the two solutions diverge significantly.

This is the idea of stability we have already seen in previous sections.

We will concern ourselves with fixed or equilibrium points here (although it is perfectly valid in

general to talk about the stability of a more complicated solution), which are points where

d
d—gz =f(y,t)=0 forallt
as in y = 1 in our example above. Recall that y = 1 was stable, and y = —1 was unstable.

Perturbation analysis Imagine that we have located some fixed point y = a, so that f (a,t) = 0.
Then we are concerned with the behaviour of the deviation from a over time. Therefore, we will

consider an initially nearby solution y (¢) = a + € (t), where we assume € (¢) is small. Then

dy
r fla+e(t),t)

f(a,t)+ 6% (a,t)+ O (62)

= 6% (a,t) + O (€%)

This actually gives us an approximate differential equation for ¢, so long as % (a,t) is non-zero

(see remark below), because clearly dy/dt = de/dt as a is a constant:

%zg(a,t)-e

dt = Oy

Note that this is equation is linear, because the coefficient of € is only a function of ¢ (because we

evaluate the partial derivative at y = a).

Example 3.17. Returning to the case f =t (1 — y?) we have

of
—- —2uyt
dy Y
-2t aty=1
2t at y = —1
and hence:
e near y =1,
€ = —2te
€ = eoe—t2 — 0 for any €y as t — oo
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and hence a sufficiently small perturbation e (small enough that the linearization approxima-
tion is valid) will always decay to 0. We conclude that the fixed point y = 1 is stable.

e near y = —1,
€ = 2te
¢ = e — +oo forany ey #£0ast — oo
so the perturbation € grows as time passes, and the fixed point y = —1 is unstable. Note

that when we say ‘e — 00’ we only mean that initially € grows; in fact, once it is sufficiently
large higher-order terms may dominate the expression for ¢, as happens when a small positive

displacement is made from y = —1. (We know that then y — 1, the stable solution.)

Remark. As mentioned above, in the case that g—g (a,t) = 0, the approximation for ¢ is not valid, and we
need to take higher order terms in the Taylor expansion for f. Consider, for example, the unpleasant-
looking equation ¢ = cosy — 1. This can in fact be solved analytically to give y = 2cot™! (¢t + C); in
terms of y (0) = yo, C = cot (yo/2).

In this case, 0f/0y = —siny is identically 0 at the obvious equilibrium solution y = 0. Hence

)

taking an extra term in the Taylor expansion, we have the ‘approximation

17

2 0y? (0.8)-¢

€ =

1
= 5'(7COSO)'€2

which can be exactly solved for e, though this is not in fact necessary: simply note that for any ¢ > 0,
€ < 0, and it is clear therefore that ¢ — 0, since ¢ = 0 at ¢ = 0. Hence positive perturbations decay
over time. But by contrast, if ¢ < 0 then we also have ¢ < 0, so negative perturbations grow over time.

As a result, the point is what is sometimes termed semi-stable.

This demonstrates a typical application of the theory. A particular special case arises for au-

tonomous systems.

Definition 3.18. An autonomous system is one in which § = f (y) is independent of t.

Autonomous systems In this case, near a fixed point y = a,

y(t) = ate(t)
ol
ke

12

é
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for some constant k as long as k # 0 (see the remark above). We know this has solution

€ = ege

and hence the fixed point y = a is stable or unstable according to whether k = % (a) is negative or

positive.

Example 3.19. One physical instance of stability problems like this occurs in considering chemical
reactions.

For instance, consider the neutralization reaction in which sodium hydroxide (NaOH) and hy-
drochloric acid (HCI) in water react to form a new water molecule and the salt sodium chloride
(NaCl).

NaOH + HCl ™8 H,0 + NaCl
number of molecules a b c c
initial number of molecules ag bo 0 0

If the reactants are in dilute solution in water, then the rate of reaction is proportional to the

product of the numbers of reactants, ab. Hence

dc

i Aab
= MX(ag—c)(bp—¢)
= f(o)

Because this system is autonomous, as f = f (¢), we can simplify the plot greatly. In fact, we

need only consider the plot of f = de¢/dt against ¢. Without loss of generality, assume ag < by:

3 by

Figure 3.5: Plot of ¢ against f (c¢) for Example 3.19, in the case ag < by

Noting that points where the curve is above the c-axis correspond to increasing c(t), and

similarly points below to decreasing c¢ (¢), we can form the so-called phase portrait:

@ @ Cc

aon bO

Figure 3.6: Phase portrait for f (¢) in Example 3.19

The arrows either side of ag point towards it, and the arrows either side of by point away from
it. Hence ag is stable, and by is unstable.

In fact, in this chemical problem, it is clear that it is not a physical solution to have negative
a or b and hence only the left-most portion of the diagram is relevant, showing that the system
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tends (beginning at any point corresponding to a possible stage in the reaction) towards the stable
equilibrium at ¢ = ag - that is, the reaction gradually slows to zero as all of chemical a is used up,

as we would expect.

Remark. The phase portrait for a semi-stable point g would look something like the following:

® T
Lo

Figure 3.7: Example of a phase portrait for a semi-stable point

Exercise 3.20. Solve the above equation explicitly for ¢ (t).

3.6.3 The logistic equation

The final example of a first-order equation that we will consider is extremely well-known because of

its interesting behaviour. It was originally presented as a simple model of population dynamics.
First, imagine a population of size y, where we assume y is large enough that taking it to be varying

continuously in time is a suitable approximation. Suppose it is controlled by two parameters,

e a constant birth rate, so that y increases at a rate ay; and

e a constant death rate, so that y decreases at a rate fy.

Then obviously we have

d
dit/ = ay—PBy=(a—-Ppy
y = yoel

so either y grows or decreases exponentially (or remains constant) depending only on whether o > 8
or a < f (or a=p).

The problem here is that the death rate, for most realistic populations, is clearly going to be affected
by the size of the population, due to effects like competition for limited resources.

So now imagine a population controlled by a birth rate and natural death rate proportional to y
as before, but with the additional effect that individuals are competing for food. The probability that
some source of food is found is proportional to y, and the probability of the same source of food being
found by two individuals is proportional to y?. If we assume that two individuals finding the same
source of food fight to the death over it, then an extra term in the death rate appears, proportional
to y%:

% =(a—B)y -y’
r

We conventionally rewrite this in terms of two new variables r = a — f and K = T as follows:

. y
- 177)
J ry( %
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Here, r defines the growth rate of the population (the rate at which the population would grow in
the absence of competition, assumed to be positive here, so that the species does not simply go extinct
even in perfect conditions), and K is the carrying capacity: the maximum number of individuals that
can be sustained indefinitely by the environment. Note that § changes sign at y = K, and indeed that

y = K is an equilibrium point.
This is called the (differential) logistic equation.

We can rewrite the equation in terms of the variable z = y/K, the ratio of the population to the

carrying capacity, eliminating this parameter entirely:

. 1.
_ oy
K K
= rx(l—ux)

We will analyze the equation in the scale-invariant form

z=rz(l—2x)

writing
&= f(x)
In fact, we can easily form the phase portrait for these equations:
® ® Y
0 Y
® ° x
0 1

Figure 3.8: Phase portraits for the logistic equation

The logistic map It might be fruitful to think about changes of population of happening over
discrete time; crudely speaking, for example, thinking of the births happening in spring, and the
deaths in the winter.

So let us attempt to consider the analogous discrete-time version of the logistic equation by writing

x — zp and & — (zp41 — 2n) /AL, where At time passes between z,, and z,41.

This approximation of the time-derivative gives us the equation

Zn+1 — Zn
At
Znt1 = zZn+At-rz, (1—2,)

(14 rAt) 2, —rAt- 22

rAt

rzn (1 — 2p)
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Now write A = 1 + rAt and let

Y N A
"\ 14rALt) "

‘xn_H =, (1 —2,) ‘

so we have

In this equation, z,, acts like the population, and A like a time-adjusted version of r. We call this
equation the logistic map.
We similarly write

Tpt1 = f(wn)

where f(z) = Az (1 —z) is in essentially the same form as for the continuous equation (we have
merely transformed r — \) - note that it is not obvious that this relationship should hold: in the form

= f(y), f(y) expresses a rate of change, whereas here, it gives the next value in the sequence.

Remark. We are taking A\ > 0 here as well.

Behaviour of the logistic map It is possible to analyze the behaviour over time of a discrete
first-order map like this by making so-called cobweb diagrams.
We begin by drawing a graph of x,, against x,1, in this case the parabola f, and then we can

trace the route (or orbit) a point xo takes over time as follows:

(i) Find the point corresponding to z( on the xz,-axis.

)
(ii) Draw a line vertically until it intersects with the curve f.

(iii) Draw a line horizontally until it intersects with the line z,,41 = z,.
(iv) Repeat steps 2 and 3 from the new point.

The idea is that the vertical line gives the point needed on the z,,; axis, and we can then find the
corresponding point on the horizontal z,, axis by using the line z,+1 = x,,.

For A < 1, we have a graph like that shown in Figure 3.9a, for x¢ > 0.5.

The diagram indicates that =z = 0 is a stable fixed point. We can take this opportunity to find all
fixed points for arbitrary A. We require 2,11 = f (2,) = &, S0 we want to solve

Ax(l—z) = =
xr(A1-2z)—1) = 0
z(A=1)=Xx) = 0
which has solutions
A—1
r = O,T
P!
= 0, 3

Note that for A < 1 the second equilibrium point lies out side the interval [0, 1] under consideration,

but for A > 1 it lies inside it. It appears in Figure 3.10.
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Xns1 Xn+1

Xy Xo 1 X Xo
(a) 0 < A < 1: Full diagram (b) 0 < XA < 1: Closer version with smaller zo

Figure 3.9: Cobweb diagrams for the logistic map with A <1

Here, it appears that 0 is an unstable fixed point, whilst the new fixed point (at the intersection of
f (xn) = x,,) appears stable.
Before we continue with the cases of A > 2, let us briefly consider the stability of fixed points in

the general case of any first-order recurrence relation.

Stability of fixed points Suppose z,, = X is a fixed point of the map x,11 = f (x,). As before,
consider a small perturbation ¢, so x,, = X + €,.

Then using a Taylor expansion of f we find that

X+ep1 = f(X + En)
= f(X)+ef (X)+0(e)
ent1 = enf (X)

since X = f (X) by hypothesis, again with the assumption that f’ (X) # 0.
Now X is stable if a small deviation gets smaller over time; that is, the magnitude of adjacent

errors falls.
€n41

€n

<1

which is equivalent (given a non-constant first-order approximation to f) to
If (X)) <1

Similarly, if |€,4+1/€n| = |f' (X)| > 1 then the point is unstable.
Note that this is valid for any first-order relation so long as f can be approximated by a Taylor
expansion of first-order, and f’ (X) # 0.

We can also deduce information from the sign of €,,41/€,. A positive ratio means that we expect
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| > X,
X1 X 1

Figure 3.10: Cobweb diagram for the logistic map with 1 < A < 2

the sequence x,, to tend directly to any stable fixed point, since consecutive displacements have the
same sign. Similarly, we expect oscillatory behaviour near any stable fixed point for the negative ratio,
since a negative perturbation becomes positive and vice versa. (Indeed, where the fixed points are

unstable, we can also expect local behaviour of the same kind.)

Remark. The f’'(X) = 0 case can be dealt with as before, by considering the ratios obtained from
higher-order terms in the Taylor series. If |f'(X)| = 1 then the problem is more complicated. To

first-order in €,, the ratio is given by

L )+ et (X)
so there are different cases according to the signs of f’ and f” at this point. (We consider only the
1" (X) # 0 cases here.) If both are positive, then for positive displacements the ratio is slightly greater
than 1, and for negative displacements it is between 0 and 1 for sufficiently small ¢,, so the point is
semi-stableS. Similarly, if f/ (X) > 0 and f” (X) < 0 then the point is semi-stable.

If f/(X) <0 then €,41 = —¢€, + pe2 for u sharing the sign of f” (X) - we assume p > 0 without
loss of generality. The sequence €, obviously alternates in sign (for small €,) and hence if €, > 0 then
len| = l€n+1] = pes. Then enio >0 and [epr2] — lens1| = pen 1. S0 Jensa| — len] = p (G%-H - 5%) <0
as lent1| < |en|. We have |e,41] < |ent2| < |€n|- It is clear that if €; > 0 then |ezn,4,| is a strictly
decreasing sequence bounded below by zero, so |eap,;| — [ for some [; in fact, because €3,,,+; shares

5We have €n+1/€n = 1 + pen so for negative displacements, €, < ent1 < 0 and hence ¢, is a strictly increasing
sequence bounded above, and therefore converges (a property of the real numbers; see Numbers & Sets or Analysis I) to
some value [. Then taking limits in €p41 = €5, + ue% we have | = 1+ ul? so pl? = 0 and hence €, — | = 0 as we assumed

n#0.
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the same sign as €;, €2yn,4; —+ [ > 0. Then evidently

€2m+j+1 = —€2mij + Hﬁgmﬂ‘ — =1+ pl?
But we know that the limit of €3(;,41)4; is [, s0
2
€(m+1)+5 = TE€2mtj+1 T M€ i

= L=l 4 (- p?)?
!

and hence

P+l (1 —pl)* = 0
ul? (—1+(1—ul)2) = 0

so either [ =0o0r1—pul==x1sol=(1+1)/u. Hencel =0,2/u. But for |ey| < 2/u this cannot be
obtained as the sequence |e,| is strictly decreasing. Hence | = 0, and the point is stable (though we
expect convergence to be slow).

For the case of the logistic map, we have a smooth function, the polynomial
f=xx(1—2)

with derivative
ff=X—2\zx
s0:
e z =0 is stable if |A\| < 1 and unstable if |A] > 1.

e z =1- 1 is stable if [\ — 2A + 2| = |2 — A| < 1. This is equivalent to 1 < A < 3. Similarly, for
A < 1and X > 3 this is unstable.

Note also that the ratio ““* & f’(x) = 2 — A which is positive for A < 2 and negative for X > 2. We
have seen that x,, tends directly to the stable fixed point for A < 2, as predicted above.

The oscillatory convergence can be seen for the case 2 < A < 3 in Figure 3.11.

Remark. For \ = 3, our analysis above for the case f' (X) = —1 indicates that there is a stable fixed
point, since [ (X) = —2X < 0.

Bifurcation The behaviour for A > 3 gets rapidly more complicated, as there are no stable attracting

points. It is important to realize that the maximum value obtained by x,, is at
d
— X (l—z) =
Lrd-2)

X =
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X X1
(a) Global behaviour (b) Detailed view of the local behaviour

Figure 3.11: Cobweb diagrams for the logistic map with 2 < A < 3

where it has value A/4. Hence to keep the sequence xz,, in [0, 1] we can have any A € [0,4]. Hence for
a A € [3,4] we have bounded behaviour without any stable fixed points.

The first interesting change is exhibited immediately after A exceeds 3. The behaviour which can
be seen is that the orbit on the cobweb diagram expands from the now unstable fixed point to become

the limit cycle shown in Figure 3.12.

This is a cycle of period 2, so we are interested in the behaviour of f2 (z) = f (f (z)). Specifically,
we want the fixed points of this map, as we are seeking cycles with z,12 = x,,.

fa) = o

M@El-f@)] =

Me(l-2)l-Ax(l—-2)] = =

e[ A (I—z(l+A)+2x® - ) —1] = 0

Ko le-(1-5)| |- (1+5) + 3 (1+3)] = o

So the fixed points of order 2 are x = 0 and 1— % (because a fixed point of first order is trivially also
a fixed point of second order, so we know this has to be a factor) and the roots of the final quadratic.

These are given by

L+1e /(117 —4(+1)
2

/52 (A2 —2X = 3)

2
A1+ —3) A+ 1)
2\

1+

>
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Xo Xy

> Xn

Figure 3.12: Cobweb diagram for the logistic map with 3 < A <1+ /6

It can be seen that these are real for A > 3, and distinct from the single fixed point for A > 3.

Let o =1 — % be the unstable fixed point. Note also that

d
o @) =1 () f(f (@)
so the rate of change of f? at z, is given by
@) ' (f (@) = [f (@)

which as already noted is greater than 1 for all A > 3. Similarly,

d2
ETUE)] = ) (7 ) (o

< 0

as f” (zg) < 0 because the gradient is falling (down past —1), and f’ (zg) < —1.

Therefore, locally around ¢, for A slightly larger than 3, we expect the graph of x,,, o = f2 (z,,) to
cross the line x,, 15 = x, steeply (and hence ‘unstably’) at ¢, but to dip back down again afterwards
and dip up before, forming two complementary stable points of f2, corresponding to the two points in
the period 2 cycle. In fact, since f” () < 0 is negative for all z, and f’ (x) falls rapidly, this holds for
any A > 3.

The cases where the stable points have direct and oscillatory convergence correspond, as before, to
the sign of d (fz) /dz at the two fixed points (i.e. the slope of the curve at the point of intersection),
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and examples of the behaviour of xo, are shown in 3.13.

Xn+2 Xni2
s
< | X
X2
I X
X0 X2 <
(a) Direct convergence of z2, to the lower second (b) Oscillatory convergence of x2, to the lower
order fixed point second order fixed point

Figure 3.13: Cobweb diagrams for the logistic map with 3 < A < 1+ /6
As one might expect, when the fixed points of f? themselves become unstable, the increased slope
of the graph of f* at the old fixed points leads to the creation of two new nearby fixed points (which
happens at 1 4+ v/6) in much the same way, which also move apart and eventually becomes unstable,
and so on. This process of period-doubling or bifurcation continues, with the splits coming more and

more rapidly.

One way of visualizing this process is to try to plot fixed points against A. It rapidly becomes

problematic to solve the polynomials of increasing order, so we usually do this fairly stochastically.

The technique often used is to pick, for each A\ of interest, some starting point x, calculate and
dispose of the first few iterations (say 100) and then plot its position thereafter, for say another 100
iterations. The idea is that the initial iterations allow the sequence to converge to one of its fixed
points or cycles, and then we plot its progress through the cycle in which it is found. The result for
A € [0,3.57] is shown in Figure 3.14.

The region A € [3.4,4] is shown in higher resolution in Figure 3.15.

Period doubling occurs at the points \; given for ¢ =1,--- 8 by

3
3.449490....
3.544090.. ..
3.564407 ...
(\) = | 3.568759...
3.569692.. .
3.560801 ...
3.569934. ..
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0.0 05 10 15 2.0 25 3.0 35

Figure 3.14: Bifurcation diagram for A < 3.57

It appears that these values are converging rapidly to some accumulation point Ao, = 3.56994567 . ..
as can be verified by taking more terms. In fact, when the mathematician Feigenbaum observed this

sequence, he guessed that it was approximately geometric, in the sense that the defect
Aoo — Apmcd "

for some constants ¢ and 9.

Indeed, the ratio
LS
exists, and has the value
6 = 4.669201 ...

and it is known as Feignbaum’s (first or delta) constant. (c has a value of 2.637...)

Let z* be the location of the maximum of f, which for the logistic map is #* = 0.5. For any n, find
the A such that z* is in the 2"-cycle. Now let d,, be the (signed) distance to =* of the closest other
point in the 2™ cycle - this is the distance between the two tines in this fork. Then the Feigenbaum

reduction parameter

. dyp
a = lim
n—oo dn+1

also exists, with the value
a = —2.502907...
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Amazingly, Feignbaum’s constants § and « are common to any period-doubling process arising in
a one-dimensional system which has a single locally quadratic maximum. Omne may think of the ¢
constant as representing a universal scaling property in the A-direction, and « in the z-direction. This
shows that system is in fact approximately self-similar in the realm of period-doubling.

The region of period doubling forms only a small part of the diagram shown in Figure 3.15. A
so-called saddle-node bifurcation, arising from a different shape in the graph of f3 to what we studied
for period-doubling bifurcations for f2, occurs at 1 + /8 & 3.828. This leads to a period 3 orbit at
this point.

However, the behaviour is actually more complicated than simply increasingly complicated periodic
structures - the orbit of the test point appears to fill out the entire interval. This is the onset of chaos,
though it is highly structured, as the interested reader may find. (Of particular interest are the windows
which open with stable oscillatory behaviour of period 3 or 7 etc. as a consequence of mode locking -

it can be seen that these experience period doubling as well, before returning once more to chaos.)

34 R N ER S ER 4.0

Figure 3.15: Bifurcation diagram for A € [3.4, 4]

3.7 * Existence and Uniqueness of Solutions

We will not go into any real detail in this course on the various results on existence and uniqueness of

solutions to general differential equations. We will just state two key results key result and move on:

Theorem 3.21 (Peano existence theorem). Consider an initial value problem

y () =f(ty@®), y(to)=uyo, tE][to—eto+e
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Definition 3.22. A Lipschitz continuous function g (z) on the real numbers is just a continuous
function with the property that it ‘never changes too fast’ - so there is a K such that for any =
and y,

9 (y) —g ()| < K|y — =

Remark. For example, if f (¢,y (t)) is differentiable in y, then we are asking that |0f/dy| < K at all

points.
Theorem 3.23 (Picard-Lindeldf).

You can check this result against the examples in section 3.5 - the ones which have a non-unique

solution in any interval around an initial value do not satisfy these conditions. For a simple example:

Example 3.24. Solve 3’ = |y|1/2 (defined, say, on the interval [0, 1]), given that y (0) = 0.
This is continuous in y and ¢, but we can easily come up with two totally different solutions:
y =0and y = z2/4. In fact, we can change to a function of the form (z — C)? /4 wherever we like!

Indeed, note that

1.1

_>
5 lyl o0

9 12
@ lyl =

as y — 0, so this is not Lipschitz continuous near 0.
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4 Second-Order Equations

In this section, we will move on to consider second-order systems, generalizing techniques where pos-
sible, and introducing new ones where appropriate. As before, we begin with a consideration of the

simpler case of constant coefficients.

4.1 Constant Coefficients

The general form of such an equation is
ay” +by' +cy = f (x)

with a, b, ¢ constants.

To solve this, we follow the same basic two-stage procedure as before:

(i) Find complementary functions satisfying the homogeneous (unforced) version of the equation,
ay” + by’ + cy =0.

(ii) Find a particular integral satisfying the forced equation.

Remark. As before, this has strong analogies to what we technically think of as affine vector spaces,
where there is some space of functions spanned by the eigenfunctions y; and y, found to be comple-
mentary functions so long as we move the origin to somewhere else, using the particular integral y,,.
The ideas of vector spaces will recur in this section. Also, in section 4.3 we will use a geometrical

description of a differential equation embedded in a vector space.

4.1.1 The complementary function

Recall that e** is an eigenfunction of d/dz, and consequently also of the repeated operator
¢ _drd
dz? ~— dz \dzx

As a result, the complementary functions are of the form y. = ¢**, and hence v/, = \y., ¥/ = Ny,

though with a different eigenvalue, \2.

and so

a2 +bh+¢=0

is the characteristic equation for the eigenvalue A. This has two solutions A; and Ay which may be
equal.

So we have two solutions to the differential equation, namely

)\1I

yp=e and y = ™2

Of course, in the case A\ = Ao, these are the same function, and we only have one degree of freedom

in our attempted solution of Ay; + Bys - clearly, we are missing something. Otherwise, though, we
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have the following result, which we will not prove:

Theorem 4.1.

Remark. Again note that this is expressed in the language of vector spaces. All of these results are

straightforwardly generalized to equations of higher order in the natural way.

The most general complementary function in the case of distinct roots is therefore

Yo = Ae)‘lx—l—Be)‘ﬂ

Example 4.2. Solve 23" + 3y’ +1 =0.

Looking for solutions of the form e** we find

222 +30+1 = 0
-3+v32-4-2-1
)\ =
2-2
=341
B 4
1
= —17—7
2
Therefore,
y=e 176—I/2

are both solutions of this form, and the general solution is

y = Ae " + Be */?

In the case that Ay and )\, have imaginary parts, we can rewrite the solution in a more compre-
hensible form by using Euler’s formula:

Example 4.3. Solve y’ + 2y +5=0.
This time, we have

—24+22-1-5
2
= —1+y—4

= -1+
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So we can write
y = Ae2ix—w +Be—2iw—w
_ e—x [AeZix 4 Be—Qix]
e " [(A+ B)cos2z + (A — B)isin 2z]

= e ?[Ccos2x + D sin 2x]

for some in general complex C, D € C. However, clearly they will be real for real initial conditions.

Remark. In this last line we have found two functions e™* cos2x and e~ * sin 2z which are linearly
independent and therefore form a basis of the unforced equation given. But they are not eigenfunctions
of the individual differential operator d/dz, only of the given left-hand side.

Finally, let us see an example of an equation where the two roots coincide:

Example 4.4 (Degeneracy). Solve y" — 6y’ + 9y = 0.

In this case we find

M—6A+9 = 0
A=37 = 0

so that A\; = Ay = 3 and there is only one solution. As a result, it is clear that 3% and 3% are not
linearly independent, and as a result they do not form a basis (because we assume the space is two

dimensional, so there must be two basis functions).

4.1.2 Detuning degenerate equations

The first method we will use to solve this equation is the same as we employed in Example 3.10, which
had an equation forced by a root of the characteristic equation - we form a family of slightly different

version of the same equation parametrized by some small € and then let ¢ — 0.

Example 4.5. Consider the equations given by
y' =6y +(9—€*)y=0

This way of inserting the parameter is simple the easiest to deal with in the general solution of
the equation for € # 0: we try y = e* and find A = 3+ ¢.
So

yo = AeBTIT 4 peli=ae
eSx (Aeem + Befem)
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Now as before, we take a Taylor expansion about € = 0 (not z) and find

Yo = e?“[A(l—l—ex—l—O(eZ))+B(1—ex+0(62))]
= " [(A+B)+ex(A— B) + O (A, Be?)]

The important idea at this point is to choose the particular solutions (values of A and B) that

we are interested in for each e. In this case, it seems like a good idea to have

A+ B
e (A— B)

[e%

B

so that «, 8 are the two new parameters that we are allowed to choose.
Then

1
B = (a—ﬂ> :O( > ase—0
2 €
so that terms like Ae? = O (¢), and hence the solution
ve = € (a+Br+0()

— " (a+pr) ase—0

So we are inclined to guess that this two-parameter function is in fact a solution in the case
€ = 0, though this is not quite a formal proof of the fact. Indeed, if we check it, we readily see that

both €3? and ze3® are solutions of the equation.

Recall from section 3.3.4 on resonant forcing terms that if e** solves a similar first-order equation,

then the general form of a particular solution with forcing term f (z) = ce* is

yp = dze”

It seems we have a similar result here: perhaps all repeated roots are accompanied by an exponential
solution with an added factor of x in the complementary function. Indeed, this is always the case (see

section 6.3).

4.1.3 Reduction of order

When we have a polynomial equation of degree n, and we know a factor (x — A1), we factor out this
term to get a simpler equation of degree n — 1. You might have wondered if we could do something
similar in the analogous differential equation when we know one solution.

In turns out that for the analogous case of the homogeneous, linear differential equation we can do
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exactly that. It is called the method of reduction of order.

Assume that y; is a complementary function solving
ay’ +by +¢c=0
Then we will look for another solution ys given by
y2 (x) = v (z) Y1 (2)

We ignore for the moment complications like the fact that y; (x¢) = 0 would guarantee y2 (z) = 0.

Now since 5 is another solution to this equation, we have

0 = a(vyp)”" +bwy) +cloy)
= (ay) + by} + cy1) v+ (2ay] + byr) v' + (ayr) v”
(2ay) + byr) v' + (ayr) v"
= <2ay/1 + b> v+ av”
Y1

Now since v does not appear in this equation - you can see it must always cancel, even for higher
order equations - this is actually a first-order equation for v’. So if we solve a first-order equation, then
we determine v’, and hence v up to a constant additive factor, which makes sense because (v + C)y;
is obviously a solution if vy is.

If y; = e’ then we have

d
(2aX +b) v + av” = o [(2a\ + b)v + av'] =0
X
av' + (2aX+b)v = C
Then if A is a repeated root, we have A = —b/2a so this gives
a' = C
v = Dz (+E)

which gives the general solution
Yo = (Dz + E) e

This technique can actually be applied more generally when we do not have constant coefficients.

4.2 Particular Integrals and Physical Systems
4.2.1 Resonance

Most of the ideas about particular integrals carry straight over from the first-order case. The following

table gives the rules of thumb for linear equations with constant coefficients:
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Forcing term f () Guess for particular solution y, (x)
em* Ae™*
sin kx, cos kx Asinkx + Bcoskx
p(z) =pnz" +---+p1z+po q(@) = gna" + -+ qx + qo

Remember that for linear equations, we can consider forcing terms one at a time, superposing (i.e.
adding together) the resulting solutions.

Again, we must consider what happens when we get forcing proportional to a complementary
function. From past experience, we expect to get an additional factor of x multiplying any such
eigenfunction, and this is roughly what happens. We already know that we can detune equations to
make educated guesses at the form of solutions, and we will see in section 4.4 one new way of obtaining

these results without guesswork, but for now let us simply note that the following approach works:

Example 4.6. Solve 3"/ — 2y’ +y = e* + ze®.

In this case, we know the complementary functions of the equation can be written as e* and
xe”, so both forcing terms are proportional to eigenfunctions.

Let us try and deal with the e” term first - clearly, we know that a guess of the form ae” will

2¢® _ it turns out that this does indeed

not work, but also that aze®” will not either. So try y, = ax
work:

yg—2y1,3+yp::2aem

Similarly, it turns out that y, = az3e® gives

Yy — 2y, +yp = - = Baze®

The most interesting case, however, is when a system which would normally oscillate at some
frequency wy is forced at that same frequency; this results in a phenomenon called resonance. Because
of the highly physical nature of this problem, we will consider functions y (t) varying in time with
derivatives y and .

Consider the equation

g'jergy:O

This has the simple solution
y = Asinwgt + B coswyt

The question is: what happens if we add a forcing term of sinwgt?

We could leap straight in and guess that there is a particular solution of the form containing a term
like ¢ sinwgt, and possibly also t cos wgt, but since it is useful to see what happens when the system is
forced at frequencies not quite equal to the natural frequency wg, we will proceed once more by the

method of detuning.

Our equation has the form

y—i—wgy:sinwt w # wo
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Figure 4.1: Diagram of near-resonating sinusoidal oscillations, displaying beating

Our guess for a particular solution, then, is accordingly one with sinwt and coswt. In fact, we
anticipate that coswt will not appear, since there is no g term in the equation (you can easily check
this).

But since we are interested in adjusting the particular solution to look more and more like a
solution to the homogeneous equation, we can actually subtract the most similar such solution from

the particular solution. Then our guess for the particular solution is

yp = C[sinwt — sinwyt]

p C [~w?sinwt + wj sinwot]

and we can therefore get
C (wg — wQ) =1

which leaves us with ) )
sin wt — sin wot
Yp = 2 2
Wi —w
We want to rewrite this in terms of Aw = wy — w, so we use one of the trigonometric identities for

sums of sine functions to get

2 wt+wot . wt —wpt
= cos sin
Yp (wo + w) Aw 2 2

-1 [co ( Aw)t si Awt]
— ~ —— |cos|wg— —— |t -sin—
(wo — %) Aw 0 2 2

This way of expressing the particular solution we have found neatly summarizes most of its prop-

erties.

e The magnitude of the sinusoidal functions is always bounded by 1, so the maximum magnitude

of this solution is roughly 1/ (wpAw), which grows rapidly as Aw — 0.

e There is an underlying sinusoidal oscillation of frequency (wp — Aw/2) & wp, just as in the

complementary function.
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Figure 4.2: Diagram of eventual linear growth

e There is an envelope of a sinusoidal function with frequency Aw/2 — 0, and hence period
2/Aw — occ.

As a result, when we force the system at close to its natural frequency, we observe what is termed
beating, as shown in Figure 4.1. This modulation of amplitude is clearly audible in some audio setups.

We can also see what happens as Aw — 0 - the wavelength of the envelope function tends to
infinity, and its shape tends towards the fixed linear cone shown as dashed lines in the figure - exactly
as expected. This limiting case is shown in Figure 4.2.

Mathematically speaking, as Aw — 0 we get
1 Sy
yp (£) — “ (coswot) - Ao

t
= ———coswpt
2w0 0

Remark. Notice that the oscillation here is generally like coswyt - this is a characteristic phenomenon
in forced oscillators: they often oscillate out of phase with the driving force.
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4.2.2 Damped oscillators

In the last subsection, we saw how physical systems which would naturally oscillate indefinitely can be-
have. Often, however, physical systems have some sort of damping force which restricts this behaviour,
causing the system to eventually come to rest in the absence of a driving force. The force leading to

oscillation is the so-called restoring force, which always ‘points towards the equilibrium solution’.

Let’s see what we mean by this. Imagine a mass M attached to a spring, which exerts a force
proportional to the extension from its natural length. Write = for the position of the mass, choosing
the origin = 0 to be the equilibrium so that the spring exerts a force Fy = —kx on the mass (k is

the spring constant). We can force the spring with some force F' (t) if we like.

At the moment, the equation of motion of the system, given by Newton’s second law, is

Mz
M3z + kx

—kx + F (t)
F (1)

which is, as we know, a forced simple harmonic oscillator.

Now suppose we restrict the motion by adding a damping mechanism, like a shock absorber in
a car. Let us imagine, for a concrete example, that the motion forces a piston to move through oil,
exerting a force of magnitude |l&| opposing the motion due to the oil’s viscosity.

The new equation is

ol ko FQ
TTMTT M T T

On physical grounds, for the unforced version of this equation, we expect behaviour roughly similar
to the harmonic oscillator, with some sort of decay over time (for example, by considering energy lost

doing work on the oil). In fact, we could solve this directly using the techniques available to us.

However, it is useful to parameterize the system more concisely. We can reduce the number of free

T

to eliminate the term multiplying x, and then we have

parameters by first rescaling time via

d%z dx
el Y =
dr2 + i te=F()

where
and f =

R =

x|

l
2VkM
This way of expressing the equation of motion shows that the fundamental characteristics of the

solution are controlled entirely by the parameter x (the system then needs to be rescaled in time to

account for the ¢ — 7 map).
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Figure 4.3: Lightly damped oscillator

We will first restrict our analysis to the case of an undamped system, f = F = 0.

2+ 22 +x=0

Trying solutions of the form e*” gives us the characteristic equation

N 4+260+1 = 0
A = —k+tVkZ-1

= )\17>\2

This naturally splits into three different cases, which we will analyze separately.

Lightly damped oscillator In the case kK < 1, we have a solution of the form
r=e " (Asin (\/1 - HQT) + Bcos (\/ 1- /<;2T>)

We call this a damped oscillator: we can see it oscillates at a constant frequency, but with an

exponentially decaying amplitude. An example is shown in Figure 4.3.

The period of oscillation is

T 2w
! VI-r2
T o 27 %
L= 415\4 g
B 4 M
C VakM =2



x

Figure 4.4: Critically damped oscillator

and the decay time, or time taken to reach some specific fraction of the original amplitude, is

°(x)

with a characteristic time (or e-folding time, the time needed to reach an amplitude equal to e~! times

the original amplitude) of

1
s o= =
K
p = JM 1
k K
M 2vVEM
— =
. 2M
T

(A related quantity, the @Q-factor, is given by i)
Note that as k — 1, the oscillation period tends to co. This gives us some indication of what to

expect in the next case.

Critical damping Here, the solution is
x=(A+ Br)e "7
where we can calculate A and B from the initial conditions:

z(0) = A
B — kA

R\
—~
(=}
Ny
|
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Figure 4.5: Over-damped oscillator

SO

A = z(0)
B = 2'(0) + rz (0)

where the derivative 2’ (0) is with respect to 7 (not t).

This solution decays to 0 most rapidly, for any value of .

Note that it displays two main kinds of behaviour, as shown in Figure 4.4 - assuming without loss
of generality that a (0) > 0, either B > 0 and the system decays essentially exponentially to 0 (with
an initial deceleration if ' (0) > 0), or 2’ (0) < 0; or B < 0, and the system passes through the origin
once before gradually decaying coming to rest from the negative direction.

The decay time remains in terms of 7 is still O (1/k), and also the time to the peak is O (1/k).

Over damping The final case has a general solution

r = AeMT 4 Be'?T
- [Aemf + Be- VR Ir

where A\, Ay < 0.
Here, the decay time is O (1/A1) and the time to the peak is O (1/A3). Note again, as shown in
Figure 4.5, that there are various possible types of behaviour, depending on the initial conditions.

Forced systems In a forced system like this, the complementary function determines the short-term,
transient response, while the particular integral determines the long-term asymptotic behaviour of the

system, provided that the forcing term is not dying away over time.

Example 4.7. &+ 2k 4+ 2 =sin7, K > 0.

83



\J

T

Figure 4.6: An example of an approximate impulse force

We want to try to find a particular solution. Trying x = C'sinT 4+ D cos7 gives C = 0 and
D =-1/2k.
Hence

1
= AeMT + BeM™ — —cosT
2K

and we know that the complementary function will tend to 0 over time, so we can say that asymp-

totically, x tends to the particular integral:

1
L~ ——COST asT — o0
2K

(The notation f ~ g means f/g — 1 in the stated limit.)
In general, the response to ¢*7 is Ae’” for some A € C. Writing A = re®, the response is
re' @9 oiving rise to a phase-shift of @ in the response. This shift depends on  and the frequency

w.

4.2.3 Impulse and point forces

So far, we have dealt entirely with continuous (and indeed usually smooth, or infinitely differentiable)

forcing terms f. Indeed, physically, we expect physical laws to behave mostly in a continuous manner

- positions do not instantly change. However, at least at the macroscopic scale, some events seem to

involve instantaneous or perfectly localized changes, and it may be a simplifying assumption to assume

this, rather than take account of all the tiny, short-lived changes that add up roughly to a very simple

model. We may find, then, that velocities or accelerations can be discontinuous in our new model.

Consider, as an example, a ball falling to the ground and bouncing. The force due to hitting the

ground, F (t), will be entirely contained in [t1,?2], where the ball first makes contact with the ground

at t; and leaves it totally at ¢5. The size of this interval will be small compared to the time spent in

the air for a reasonably rigid or elastic ball, and we can pick a representative point in this interval,
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say T', such that the force is almost entirely concentrated at within some tiny interval [T' — €, T + €] of
length O (e).

The form of F'(t) in this case would be very difficult to calculate even numerically, since the ball
would in practice begin vibrating internally, and elastically changing shape, so we would need to know
a lot of information about the ball’s internal structure, in order to calculate its vibrational modes, and
so on. But the approximation shown in Figure 4.6 is roughly what we are going to assume to be the
general rule, since it does not really make any difference what the exact form of F' is for our purposes.

It is then more convenient for the purposes of our analytic approximation to assume that the
collision occurs instantaneously at time t = T - we are essentially taking the physical limit ¢ — 0.

Mathematically, Newton’s second law states (assuming locally constant gravity) that
mi = F (t) —mg
so integrating over the small range [T — ¢, T + €] we find
T+e T+e T+e
/ midt = / F(t)dt — / mgdt
T—e T—e T—e

d T+e
m—x I —2mge
dt |,

where I = det is defined to be the impulse due to F, the area under the force-time curve. This
transfer of momentum is the only macroscopic property of F' which is relevant to the variable x.

Hence, for small ¢,
e
dt

[
~

T+e
Amomentum = [ ]
T—e

So the only feature of F (¢;¢€) - F (t) is parameterized by € to give a family of increasingly localized
forces as € — 0 - which we are considering is its time-integral.

We are considering a family of functions D (¢, €) such that
lim D (t,e) =0 forallt+#0
e—0

and
oo

lim D(t;e)dt =1

e—0 s

These two properties define, in the limit ¢ — 0, a distribution, which is not a true function,
but something defined almost entirely in terms of its properties when multiplied by a function and

integrated over some suitable range.

Remark. An example of such a family of functions D is given by

1
D (t, 6) = $67?

and shown in Figure 4.7.

It is clear that as e — 0, the central point D (0, €) — oo, which is why there is no suitable function
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Figure 4.7: A family of approximate impulses

Wlth the [)I()[)GI(IGS Of t}le llml' .
] 11 D 1€

is not defined.
However, in practice we think of this limit as defining a function:

Definition 4.8. The Dirac delta function is the generalized function or distribution § (x) satisfying

f(c) ifce€(a,b)

b
/f(x)5(m—c)dx= _
a 0 if ¢ & [a,b]

for any suitable f (in particular, we require f to be continuous at 0). (We leave the problematic

cases of ¢ = a and ¢ = b aside here.)

Remark. One way of expressing this formally is to say that ¢ is a linear functional on some space of
functions, so that d [af (z) + bg (x)] = af (0) + bg (0).
Note that, for example,
(oo}

lim /_00 f(@)D(z;e)dz = f(0)lim D (x;€)da

e—0 =0 J_

= f(0)

for continuous f.
This ‘“function’ (for our purposes here, we shall act as if it was a typical function) is convenient for

representing and doing calculations with impulses and point forces:

Example 4.9. For the bouncing ball considered above, we can write
mi=-mg+ 16t —T)

with, say, x (0) = 2o and & (0) = 0. Then we have
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(i) For 0 <t < T, we have m& = —mg so

t2
$2—95+At+B

The initial conditions give B = xg and A = 0, and thus

1
x(t) = —§9t2 + o

(ii) For T < t < oo, we also have mi& = —myg, so again
L o

This time, we apparently lack initial conditions to give us the values of C' and D.

(iii) To obtain a solution, we first make the (physically based) assumption that x (¢) is continuous
at t =T. As t grows to T from below, we have

1
li t) = —=gT?
dm e t) = =597+

so we expect this to be the value of  (T'). Then by the assumption, we have

1 1
—QgTQ +CT+D = ——gT*+ux

2
CT+D o

(iv) We still need more information to calculate C' and D. We can gain some integrating the

differential equation over a small interval around the time of the impulse:

T+e T+e T+e
/ mfﬁdt+/ mgdt = / I6(t—T)dt

T—e T—e T—e
A [mz] + 2mge 1

so taking the limit ¢ — 0 we can deduce the change in & at time T’

Ai = —

m

Now we can write down the velocities before and after to obtain another equation:

T+~ = [T+

I
c = =
m
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Figure 4.8: The solution to the bouncing ball problem, with the velocity superimposed as a dotted
line.

(v) Hence

—1gt? + 9 fort <T
19+ Lt+2g— LT fort>T

fort <T
(t-T) fort>T

L o
—§gt + xo +

I~ <

as shown in Figure 4.8.

Remark. Suppose that the solution z (t) had been discontinuous at ¢ = T - then 2’ () would have a
d-like singularity at ¢ = T, and z” (t) would behave ‘even more singularly’, like the highly irregular
function ‘6", at ¢ = T. The equation mz” + mg = I (t —T) would then not be satisfied, as can be
seen (for example) by integrating it and noting that the left-hand side has a 0-type singularity, but
the right-hand side is simply a discontinuous step.

The result of integrating the § function is clearly always a discontinuous step.

Definition 4.10. The Heaviside step function is defined by

0 <0
H(x):/ o(t)ydt=141 x>0
undefined atz =0
We can write “(lj—lz = ¢ (z)’ so long as we are careful only to use this relationship inside integrals.
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Example 4.11. We can write the solution to the bouncing ball problem as
1 5 I
x(t) = —igt +$0+E(t—T)H(t—T)

which looks exactly like the result we would expect from integrating the original equation twice:

mi = —mg+I16(t—1T)
mi = —mgt+IH@{t—-T)+Cy
1
mr = —imth+I~(t—T)H(t—T)+Clt+CO

noting that

As well as cropping up in solutions, this function is useful for posing problems with a state change,

as in when a switch is thrown.
Example 4.12. Consider a simple harmonic oscillator y (¢) which has a sinusoidal force applied
to it after ¢ = 27 at the resonant frequency of the system:
y" + 4y = sin (2t) H (t — 27)

Let the initial conditions be y (0) = 1 and 3’ (0) = 0. We can solve the problem as before by

breaking it into the two natural cases:

(i) For t < 27 we have y’ + 4y = 0, and using the initial conditions we have
y = cos (2t)
(ii) For ¢t > 27 we have y” + 4y = sin (2t) with general solution
. 1
y = Acos (2t) + Bsin (2t) — Zt cos (2t)

(iii) By continuity (arguing as before that a discontinuous solution would not satisfy the equation),

we have
. 1
cos (4r) = Acos(4m)+ Bsin (4w) — 1 27 cos (4)

1 = A-Z

2

™

A = 142

+ 2
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Figure 4.9: The solution to the switched resonance problem

(iv) Integrating over [2m — €, 27 + €] we have

2m+€ 27w +e€
Aly] +4 / ydt — / sin (26) H (t — 27) dt
2 2

T—€ T—€

Now the integral of y vanishes as ¢ — 0, because y is bounded near 27 (since it is continuous).
Similarly, the right-hand side is also 0. Hence g’ is also continuous (which we could have
deduced from observing that if it was not then ¢’ would have introduce an unbalanced é-type

singularity into the equation) and hence

0 = 0+2B- icos (4m) + % - 27 sin (47)
=
(v) So the solution is
cos 2t t <27

y() = . ,
(1+%)cos2t+§sm2t—zc082t t> 27

t<2m

cos 2t +
(32— L)cos2t+ £sin2t t>2r

as shown in Figure 4.9 - the dotted line indicates the forcing term, activated at T = 2.
Note how the phase of the solution curve changes to be quarter a period ahead of the forcing

instead of quarter a period behind it.

The Heaviside step function is also useful in electrical switched problems.

90



4.3 Phase Space

It is useful to look in a little more detail at the language of vector spaces that we have been using,
especially before we move on to solving non-linear equations.

The first thing we need to know is how to encode functions.

4.3.1 Solution vectors

A differential equation of nth order determines” the nth derivative y(™ () of any solution y (z) in
terms of y (), ¥’ (z) and all other derivatives up to y™~1 (z). In fact, by differentiating n times, we
can also work out all higher derivatives.

As a result, all derivatives of y at a point can be worked out using just these n values. So assuming
that the solution has a globally converging Taylor expansion, we have a complete description of the
function everywhere!

9" (20) n
y(@) =3 L (o - )
n=0

We can think in terms of a solution vector

y = (z)

defining a point for each x in an n-dimensional phase space, which is a vector space. As z varies from
xo, Y (29) contains all the information needed to trace out a trajectory in phase space.

Hence for every point at which the equations have a solution, there is a wunique path in phase
space passing through that point. It follows that two different trajectories cannot cross (because if
Y; (z1) = Y2 (21) then Y5 () = Yo (z) for all z, so the trajectories are identical).

Example 4.13. Consider for example the equation y” + y'/2 + 5y/16 = 0, which has solutions

y = e~ ®/4+i2/2 We rewrote terms like this in terms of the cos (-) and sin () basis before, as in
x
= e /cos =
Y1 B
x
= e "ginZ
Y2 5

which is useful because it means that we can restrict everything to the real case for our purposes.

The solution vectors corresponding to the basis we have chosen are

v, — e—z/4 cos 5
! —ie“’”/‘l (cos% —|—2sin%)

"In general, actually, this does not hold: we are assuming the equation can be written as y(m) = f (t, vy, ,y("_l))

where f is sorrée single-valued function. For example, (y’)2 = 4y has two solutions passing through (0, 1), corresponding
toy = (x+1)”.
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and

e—z/4 sin%
Yz = Lo—x/4 (2 cos £ — sin g)
1 2 2

These are plotted in Figure 4.10, with y on the horizontal axis and 3’ on the vertical axis.

Y,(0)

)

y

Y10

Figure 4.10: The trajectories from Example 4.13. The red dots are spaced at equal values of x.

We will use the idea of solution vectors in section 4.7 (and more generally in section 6) to transform
between higher-order equations and systems of first-order equations (or equivalently, first-order equa-
tions for vectors), and we will also use them in order to reformulate many of our techniques in a concise
matrix representation. For now, though, we will content ourselves with a particular observation about
how these particular vectors behave, which will be useful in addressing forced equations (as we shall

see in the following section on wariation of parameters).

4.3.2 Abel’s Theorem

Note that in this phase space, if the solution vectors Y; (x) and Yy (x) are linearly independent at some

point, then the two solutions y; () and ys () are independent solutions of the differential equation.
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Proof. If y; and y» are dependent, then we have ay; + Sys = 0 for «, 8 not both zero (this holds
for any x under consideration). Hence ay] + By, = 0 as well, so aY; + Y2 = 0 at all points in
the domain of interest.

So if Y; and Y, are linearly independent at some point, then the functions are linearly inde-

pendent. O

Note the difference in the sense of ‘linear independence’ here: two functions are dependent if and
only if one of them is a constant multiple of the other. There is no particular = involved here - the
functions have to satisfy y; = Ays or yo = py; everywhere, so that they are trivial variations on each

other. By contrast, the solution vectors have a property of linear (in)dependence for each x.

Also, note that the converse is not in general true: it is possible for two functions that the Y; are
linearly dependent everywhere, but that the functions are linearly independent. The easiest way to

construct such a function is to glue together, say, 2 and —z? at z = 0:

fi(z) = =?
x2 x>0

f2(z) =

—x°¢ <0

2 + 2
Y= (") v.= (7"
2z +2x

and clearly Y; = £Y5 depending on the sign of z, but f; Z Afs for all x, for any value of A, etc. -

Then the vectors are

again, the different senses of linear dependence are at play here.
Remark. This result obviously extends to higher dimensions.

Now recall that a set of vectors vi,---,vy are linearly independent if and only if the matrix

determinant |vqy vy --- V| containing the columns v; is non-zero.

Definition 4.14. The Wronskian for a set of functions y; (x) is the determinant W (z) of the
matrix with the solution vectors as columns.

For the second-order case,
Y1 Y2
yioYs

So if W (xg) # 0 for some zq the solutions are independent.
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Example 4.15. Using the example above, we have

W(x) =

e~%/4 cos z e~ %/4sin z
—ie"/‘l (cos 5 +2sin %) ie‘w/‘l (2 cos 3 — sin %)
1
= —e 2/t (2 cos? g — sin g cos g + sin g cos g + 2sin? g)
1

— Ze%/2.9

N

_ 76—1‘/2#0

Note that in this example, the Wronskian is actually non-zero everywhere. This, in fact, is a general

rule for solutions to linear differential equations with a continuity conditions on the coefficients:

Theorem 4.16 (Abel’s Theorem).

We will present here a proof of the two-dimensional case, since it is of special interest to us here.

See section 6.4 for the general proof.

Proof. Write the equation as
y'+p(@)y +aq(x)y=0

so that p is continuous. This holds for y; and ys.
Now consider multiplying each equation by the other solution and subtracting:

y2 (W +oyy +aqn) = 0
v (v +pys +qy2) = 0
ot — iys] +p[y2yy —viys] = 0

But now note that the term multiplying p is precisely the negative of the Wronskian

Y1 Y2
-W=—1", 7 |= —y1Ys + Y211
LARCD)
and that also
W' = iy —yaut + Y1y — Yivs

= —[yoyi — v1v5]
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Hence

W' —pW = 0
Wi +p@)W = 0
W = Wye Jp@de

Then since e¢* # 0 for any arbitrary complex number z € C, either Wy = 0 and W (x) = 0 or
Wy # 0 and W (z) # 0 for any z. O

Remark. We will use some of the intermediate stages in this proof again. Note that the expression

W = Wye™ /7de

is sometimes known as Abel’s Identity. (Again, in section 6.4, the generalization of this statement is

given.)

4.4 Variation of Parameters

In this section we will see how to obtain particular solutions to forced non-linear equations using two
complementary functions. Section 6.5 has the generalized version of this method, for higher dimensional
cases.

We begin by taking a general second-order linear ODE,

y' +p)y +q(@)y=f(z)

and two linearly independent solutions y; (z) and ys ().

Y= (") and Yo= ("
n Y2

form a basis of the space of functions satisfying such a second-order equation, for every x, because we

Then the solution vectors

know they remain at all times linearly independent (from Theorem 4.16).

So at any point x, any solution vector Y, can be written as a linear combination of these vectors:
Y, (z) = u(z) Yy (2) +v(z) Yo (2)

Note that the coordinates u () and v (x) are both functions of z (in general) - what we want now is
an equation for u and v - in fact, we expect them to be determined up to at most an additive constant.
But we have lots of information about the functions involved. Writing the two scalar equations implied

by this vector equation out, we have

Yp = UY1+vy2
Y, = uyp+ vy,
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But since we know y,, is a solution to the (forced) ODE, we know

Yy, +oy, tayy = f
A
(uyy + vys) +p (uy) + vyy) + q (uys + vy2) f

But y; and y are solutions to the homogeneous equation, so we can rewrite this as

fo= uw( +pyy+aqu) +v(yy +pys + que) + yu’ +yp0

yiu' + yov’

This is the first equation we will use to compute v’ and v’. To obtain another, we can use the

original two equations:

uyy +vyy, = Yy,
= (uyr +vy2)
= 'y +uy) + 0y vy,
0 = vy +v'ys

G ()-0)

which we can solve by simply inverting the matrix on the left (its determinant is W # 0) to get

) = (0
v) T\ ow ) s

So we have

o = -2
W
o o= A
w

We can then integrate these equations in order to obtain the u and v required.

The full result can be written in the form

dz + ys %dx

S

Yp =MW1 W

noting that the additive constants in the integrals correspond to adding on multiples of complementary

functions, which was as we expected.

Remark. This method can be generalized to equations of higher order, and we do exactly that in

section 6.5. The key idea is to write the particular solution as a combination of the homogeneous ones.

Y, (@) =u(@) Y1 (@) +v (@) Ya ()]
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Example 4.17. Solve §j + w?y = sin wt.
We will demonstrate the full technique here for completeness.

We have two solutions, y; = sinwt and y, = coswt. The Wronskian for these solutions is

sin wt cos wt
. = —Ww
wcoswt —wsinwt

Choose u and v so that y, = usinwt + vcoswt and g, = uw cos wt — vwsinwt. But then

Yp = uwcoswt+ usinwt

—vw sin wt + ¥ coswt

SO

(sinwt) @+ (coswt) v =0

Also, differentiating y,, we have

Up = —uw? sin wt + fiw cos wt

—vw? coswt — Hw sin wt

and substituting this into the original equation we have
(weoswt) i — (wsinwt) v = sinwt
Combining these two equations, we have
coswisinwt  sin 2wt

’[:L = =
w 2w

. sin® wt cos2wt — 1
v = —_ =
w 2w

Hence, integrating and ignoring any constant factors, we see

cos 2wt
u = —_—
40?2
sin 2wt t
v= — = —
4w? 2w
Thus the solution we have found is
L cos 2wt sinwt + sin 2wt coswt) — —— cos wt
= —— (—cos2wtsinwt + sin 2wt cos wt) — — cosw
I 40,2 2w
sin wt t .
= —_— — — COS W
4w? 2w

multiple of complementary function as found by detuning

which is, up to the arbitrary multiples of the complementary function, precisely the result we found

from detuning in section 4.2.1.
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Recall also that in section 4.2.1 that we tried to solve
y' =2y +y=e"+ze”

and discovered that x2e® and x3e® gave us the necessary remainders. We can deduce these general

rules for second-order equations using variation of parameters.

Theorem 4.18.

(i) If eM% and e*** are two independent complementary functions for a second-order linear equa-

tion, then for an equation with forcing term g (x) there is a particular integral of the form

<("/\”' {/‘5" (%7M/'!/ () df} 4 oete® {/‘T (37&[,(] (t) (12‘}) /(A2 — A1)

(it) If e’ and xe*® are two independent complementary functions for a second-order linear equa-

tion, then for an equation with forcing term g (x) there is a particular integral of the form

N < / te Mg (t)dt + x / e Mg (t) d/,>

Proof.

(i) We have the Wronskian

)\1a; >\2w
e e
W =
AleAlév )\26)\2I
= 6A1m6>\2$ ()\2 — )\1)
so using the results from above,
2
Yp = W / —%dm + 2 yvlv—fdx

A2 A1z
— _e)\lx/ e g(l‘) )dx+€>\2x/ € g(x) dx

e MT AT ()\2 — )\1 6)‘1376)‘2z ()\2 — )\1)

—)\1Z —>\217
_ _eklm/e 9($)dx+exzx/e g(x)dx
(A2 — A1) (A2 — A1)

as required.
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(ii) The Wronskian is now

W eAm xeAm
AerM (1 + Az) e
= 2T (1+ Az — )
_ 62>\I
SO
Yp = N1 —%dx + Yo %dx
Az Az
Te T e T
= —eM / 7621( )dx + ze® / 7629)‘9(6 >dx

= —e’\x/xe_’\l'g (x) dx—i—xe”\x/e_)‘xg (x)dx

These general formulae mean that we can write down solutions for any (continuous, at least) forcing

term in a linear second-order equation with constant coefficients in the form of an integral.

Remark. In particular, this gives us a particular solution for a forcing term proportional to z*e** for

e [—/x-xkdm—&—x/xkdx}

ae)\a:xk+2

an equation with a repeated root:

Yp

where we ignore multiples of the complementary functions.

Note that for the case of distinct roots, we can get the general results for 2¥eM® too. Ignoring

yp — _6A1$ |:/ e—)\lxxke>\1$dx:| +e)\2$ |:/e—)\23cxke>\1xdx:|

— _eklw [axk-‘rl] + e)\gaj |:/ e(>\1—>\2)$xkdx:|

constant factors,

Now if k£ > 0 is an integer, this last integral evaluates (as may be shown by integration by parts)
to a kth degree polynomial in x multiplied by the same exponential, and the overall expression is a

/\1I

(k + 1)th degree polynomial in & multiplied by e**®. Otherwise, the expression can only be written in

terms of the (incomplete) gamma function

F(a;z):/ t*lemtdt
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4.5 Equidimensional Equations

An equidimensional® equation is an ODE which is invariant under the transformation x — px for any
1 # 0 - often, we also require that the equation is linear, and sometimes that it is not forced. In this
section, we will consider linear equidimensional functions which are (in general) forced, and by terms
which do not have to respect the scale invariance.

In this case, it is equivalent to the requirement derivatives of the nth order always appear multiplied
by z", since only then do we get
d"y
dan

n

1

24"y n d"y
% —_—
T (i) dz" p

We can write an essentially general (up to, for example, x — = + ) second-order equation as

az?y” + bry' +cy = f ()

for a, b, ¢ all constant.

4.5.1 Solving the equation

This simple form of equation admits a general solution - we are essentially interested in eigenfunctions

of the new operator a:di, and its square,
xT

A Al [ d)_ L@ d
dz xdo: =7 Cde2 dx -7 da? xdz

k

But we can see directly from the original operator that any polynomial term x” is an eigenfunction,

because the derivative reduces the power of x by one, and the multiplication restores it:

d k—1 k
r— |2 =kx-x =kx
o ]
So to solve the unforced version of the original equation, we can guess y = z¥. We know that we

will then have

d? (a%)  d(z") d («*)
2 k _
alx P + i + bx e —|—c(m) =0
ak(k—1)+bk+c = 0
ak> +(b—a)k+c = 0

This is the characteristic equation for the eigenvalue k, which may be solved to find k = ky, ko, and

then if k1 and ko are distinct, we can write

yo = Az™ + bak?

8 Confusingly, equidimensional equidimensional equations are also called “homogeneous” equations, which has a dif-
ferent meaning here to “unforced”. Other names include a Cauchy-FEuler, Euler-Cauchy and Fuler’s equation.
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-

1

(a) Distinct roots (not multiplied by Inz) (b) Repeated roots (multiplied by Inz)

Figure 4.11: Example solutions to the logistic equation for real roots

However, this is no help at all if the two roots are the same. Clearly, multiplying the function by

x will not work in this case!

Instead, we must use what we have learned from finding the typical complementary functions to

work out how to solve the equation. The main idea is to note that the basis functions z* have the

klnz

form of e , so perhaps if we rewrote the equation in terms of z = Inz we would find an equation

that we already know how to solve.

The transformation maps r — e*, and % — diz = f—z/‘if: = e_zi so the new equation has the
form
d d d

ae2ze_2£ [e_zdi{] + beze_zd—z +ey = f(e)
APy Ldy dy

ae” [e Z@ —e Z& —|—b&+cy = f(e?)
d*y dy

a@—l—(b—a)&—i—cy = f(e)

The left-hand side now has precisely the form of a second-order linear equation with constant
coefficients. We can see that this has the same characteristic equation as the one we found for k& above,
with complementary functions e¥* = z*, and what is more, we know that in the case that the roots
coincide, the new solution is

kz

ze" = (Inz) z*

The overall shape of both forms of solution for real k are shown in Figure 4.11.

As a point of interest, note the form of solutions for complex roots k:

e(aJr,Bi)z

= e [cos Bz + sin fz]

= z%[cos(Blnx) +isin(S1nz)]

Hence we can take z® cos (8 1Inz) and 2 sin (8 1Inz) to be our two independent solutions. Typical

solutions of the first form in this case are shown in Figure 4.12.
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Figure 4.12: Equidimensional solution curves for complex roots

Remark. Forced versions of this equation are probably best solved by applying techniques we have

already discussed to the transformed version of the equation.

4.5.2 Difference equation analogues

There are two ways in which we can view the discrete version of an equidimensional equation.

Typical case Firstly, consider a general linear recurrence relation of the form
aYn+2 + bynt1 +cyn = fn

We can solve this by finding the form of eigenfunctions of the map y, — yn+1, and exploiting the
linearity of the equation.
But clearly, the eigenfunctions of vy, — y,41 are just y, = k", with the corresponding eigenvalue
k, because then
Ynt1 =k - k" = ky,

Remark. Alternatively, the (forward) difference operator D [y,] is defined by
D [yn} =Yn+1 — Yn
and it too has eigenfunctions y,, = k™:

Dly] = Kk

So to solve the original equation, we can think of it as
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where A =a, B=b+ 2a and C = ¢+ b+ a, and then solve from there.

Either way, we will end up with the clear characteristic equation

ak™ 2 4 bk 4 k™ = 0
ak®> +bk+c¢c = 0

with solutions k = k1, ks.
The general complementary functions are then
yn = AkY + BkY
for distinct roots.

In the case of a repeated root, it is not very surprising that we get solutions of the form

Yn = (A+ Bn) k"

Particular integrals are of broadly the same form as we have discussed previously:

Inhomogeneity f, Term of particular solution y,

k™ for root k kK"n- k™, -
b" b"
nP AnP + BnP~l ...+ Cn+ D

an? +bnP~t ...

Example 4.19. Consider the modified Fibonacci sequence G,, = G,,_1 + G,_2 + 1, with initial
conditions Gy = 0 and GG; = 1. This has terms

0,1,2,4,7,12,20,33, - -

The characteristic equation is k? — k — 1 = 0 which has solutions

1++5
2

- P ——
o

Let us first try to find a particular solution. Referring to the above table, we see the forcing is
of the form 1™, so we guess a particular solution

G,=a-1"=a
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which is easily found to be correct for

a = a+ta+1
0 = a+1
a = -1
Then we have
G, = Ad"+ B —l "_1
" i}
Now we can find A and B:
Gy = A+B—-1=0
1 5 1-+5
Gy = (+\[)A+( \f)
2 2
A+ B A—-B
= 5—1
()
=1
So we have
A+B =1
3
A—-B = —
5
4 - 3tV5_ @
2v5 V5
s _ 3-V5_ (e’
2v/5 Vb
which gives
(bn+2 1 n+2
Gn +( <I>) -1
NG
- Fn+2_1

Indeed, if we add 1 to the sequence for G,, we get

1,2,3,5,8,13,21,34, - --

which is precisely the Fibonacci sequence shifted by two places (assuming Fy = 0 and F; = 1).
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Alternative analogy The other way in which it is possible to draw an analogy with a discrete

equation is via the more complicated expression given, for a fixed integer m, by

fmm)=nn+1)---(n+m-—1)

The point about this function is the properties it has with respect to the forward difference operator
D)

Dfm ()] = fmn+1)— fm(n)
= n+1)(n+2)---(n+m-—1)[(n+m)—n]

= %fm (n)

It can be shown that repeating this process k£ times gives us

m(m—1)---(m—k+1)
nn+1)---(n+k—1)

~

D [fm ()] = fi) (n) = m (1)

fm (n)
fr (n)

= mm-1)--(m—k+1)

This is very similar to the fact that

dr x™
w[xm]zm(m—l)---(m—k—{—l)ﬁ
k
which is what we used to solve the equidimensional equation, in which terms of the form z* % appear.

In fact, we can use this to solve equations like
an (n+ 1)y + bny) + ey, = 0

because we can guess solutions like y, = f,, (n) and solve for m:

Il
=

afm (n) -m(m —1) +bfm (n) - m + cfm (n)
am(m—1)+bm+c

|
o

which is the same form of the characteristic equation as we had before.

Example 4.20. Solve n(n+ 1) ypni2 —2n(n+ 1) ypny1 — (2+n(n+ 1))y, = 0.

This is not currently of the stated form, since we need terms like yf«?) and so on. Let us rewrite

this:

n(n+1) y£2)+2yn+1_yn:| _Qn(1+n)yn+1_(2+n(n+1))yn:n(n+1)y7(z2)_2yn:0
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Now it is as required, so we can attempt a solution y, = f, (n). We need to solve

m(m—-1)—-2 = 0
(m+1)(m—-2) = 0
m = -1,2

Hence our general solution is

A
yn:m—i—Bn(n—i-l)

demonstrating that this works for m < 0.

Remark. This approach also works for non-integer m if we use the I" function instead of the partial

factorials:
T'(n+m)

Im (n) = I‘(n)

4.6 Series Solutions

So far, we have mainly looked at special cases of linear second-order equations, notably those with
constant coefficients, and equidimensional equations. However, it is obviously not always the case that
we can find an analytic solution.

In section 3.6, we developed chiefly graphical methods for analyzing first-order equations. Here, we

will develop a more algebraic approach to solving equations like
a(@)y" +b(x)y +c(x)y=0

or, where appropriate,
" /
y' +p@)y +q(@)y=0

The idea is that we try to find solutions as (in general infinite) series in terms of powers of the
independent variable z. We are most familiar with one type of power series, Taylor series, where the

powers are all non-negative integers, as in

oo
Z an (z —x0)"
n=0

though for the rest of this section we will work mainly with the translated case xo = 0, so that this

o0
E anpx”
n=0

It turns out that it is not always possible to solve equations in this form, but we can often find a

would be the Maclaurin series

similar form of solution. It will be useful to classify points according to the behaviour of the series for
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the coefficients as follows:

Definition 4.21. x = zg is an ordinary point if p(z) = 223 and ¢ (x) = ;((f;; have Taylor series

about zg.

Otherwise, ¢ is a singular point. If zq is singular, but the equation may be written in the form

A(z) (& = 20)*y" + B (z) (& = 20)y + C(2)y =0

where ﬁg;; = (z —x9)p(z) and igig = (z — 20)” ¢ (z) have Taylor series here, then we say zq is

a regular singular point - otherwise, it is irreqular.

Remark. Another way the difference between the types of singular points is commonly expressed is
that a regular singular point has p and ¢ with poles at most order 1 and 2 respectively. Note that we

rewrite the equation in equidimensional form to see its behaviour.

Recall that the Taylor series expansion must exist and converge for all z in some interval containing
T, but not necessarily everywhere.

Here are a few examples for clarity:

Example 4.22. You can check the following cases as an exercise.

(i) (1 — x2) y’ — xy’ + 5y = 0. Here, x = 0 is ordinary, and x = +1 are regular singular points.

(ii) (sinz)y” + (cosz)y’ + 5y = 0. All points of the form x = nr for integer n are singular, but

they are in fact regular.

(iii) (1+ /x)y” — 2y’ +5y = 0. The point = 0 is now an example of an irregular singular point.

4.6.1 Taylor series solutions

Let’s first look at an example of an equation which can be solved using a Taylor series.

Example 4.23. Solve
y' +ay —2y=0

Let us expand about the point z = 0 (for no reason other than it makes the bookkeeping easier),

so that our trial (Taylor series) solution is

(oo}
y= g anpz"”
n=0

Then the equation can be written in terms of an infinite sum, since for example
o0
y/ — § :na”xnfl
n=0
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However, to make the manipulations clearer, we will consider the equation in the pseudo-

equidimensional form we used in classifying stationary points:
(z 2 ”)+x (zy') —22% (y) =0

Then we have -
Z (n—1 +nm272x2]anx":0

We want to extract some information about the coefficients a,,, but this is obviously difficult
since the powers of = are interleaved arbitrarily into the equation. To try to solve this problem, let

us reorganize the terms into the following form:

oo

Z (n—1)an+apn—2(n—2)—2a,_2]z" =0

where we have just realized that terms like f (n) 222" = f (n) "2 can equally well be written as

f(n—2)z", just appearing 2 places later in the sequence. We have invented new coefficients a_;
and a_o, which are both 0, in order to enable us to do this without separating out the n = 0,1
cases.

But now since both sides are identical, we can just compare coefficients of z™!

nn—1)a,+an_2(n—2)—2a,2 = 0

nn—1a, = (4—n)ap—2

This allows us to work out the coefficients in the power series, provided we have some initial

terms, ag and aq, as for n # 0,1 we have

4—n
an = Ay
nn—1) "?
SO
2
ag = §a0
0
ay, = magzo
az,m = 0
and
1
az = ﬁal
-1 B 1
BT 5T 5 432"
-3 3
a7 = —a5=—a
r 7.6 ° 7t

a; form>1

(_1)m+11.3.....(2m_3)

Gam+1 = 2m +1)!

108



Hence if we take the case ag = 1, a3 = 0 we get the solution

y1=1+2°
and if we take ag =0, a; = 1 we get
y2 — x+7$37ix5+7m7f...
6 120 1680
1-3----. (2m — 3)
1 m—+1 2m-+1
+(=1 @m + 1) +

These two solutions can then be used as the basis of a general solution

y = Ay + By

exactly as before.

This gives the reader a fairly good example of what to expect in many situations - sometimes one

or more solutions will have a polynomial expression; sometimes they will be infinite, in which case

the solutions will converge over at least the same range as the coefficients p (x) and ¢ (z) do (see next

section) - hence in the case of functions like these, which are everywhere equal to their Taylor series

about any point, the solutions should also be universally defined by a single Taylor series. In general,

analytic coefficients which are locally equal to Taylor series about any point have analytic solutions.

Infinite expressions can also be sometimes be identified in closed form, though in general we have no

reason to expect they can - there is no natural way to express the second solution above.

It is a general result (due to Frobenius and Fuchs) that if z¢ is a regular point, there will be Taylor

series solutions:

Theorem 4.24.

We will not prove this result here.

For an example where p and ¢ do not have Taylor series that converge everywhere, consider the

following example:

Example 4.25. Solve
(1-a2)'y" —(1—2)y —y=0

We will expand around z = 0 again, noting that p = 1/ (1 — z) and ¢ = 1/ (1 — z)* both have
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Taylor expansions at this point which are only valid for |z| < 1. Again, assume there is a locally

convergent solution

y= Z anpx™
and proceed to adjust the equation and compare coefficients:
(1—2%) (2%y") — (z — 2%) (zy) — 2’y =0
Thus:
Z [n(n—1)—2n(n—1)z+n(n—1)2° — nz +na® — 2°] a,2" =

Z[n(n—1)—n(2n—1)x+(n—1)(n+l)x2] apx" =

dln(n—1)a,—(n—1)(2n=3)an1+(n—3) (n—1)a, o]a" =
(n=1)[na, —(2n—=3)ap—1+ (n—3)a,—2] =

o o o O

This equation looks unpleasant, but it is actually quite easy to pick out simple forms for the
solution by clever choices of ay and a;.

First, note that 2as —a; —ag = 0, and that 3az —3as = 0. The second equation tells us ag = as.
Note that if a,,_1 = a,_o then we have

na, +(n—3-2n+3)a,—1 = 0
na, = NGnp_1
ap = Gp-1

Hence all series solutions have constant terms beyond as! So the natural first choice is to make
these all vanish, which from the first equation happens when a; + ag = 0. Indeed, ag = 1 and
a; = —1 gives us the solution

y=1—=x

For the other solution, let us choose the neat solution ag = 1, a; = 1 since then all terms are
identically 1:
y=1l+azx+22+2>+. -

This solution we can recognize instantly as being the Taylor series, valid for |x| < 1, for

It is easy to verify that both of these closed-form solutions work for all z, even outside the
radius of convergence of the coefficients, though the power series is only valid for the same range
as those, namely |z| < 1.

Remark. We could have solved the above equation analytically using the methods from the section on
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equidimensional equations: making the translation ©w = z — 1 we have

Il
o

u2y// + uy/ —y
with characteristic equation

AA=1)+r-1 = 0
-1 =0

which means the solutions are directly equivalent to the solutions found above:

1
y = u,—
u

1
r—1,——
X

4.6.2 Frobenius series solutions

So how can we modify the Taylor form of a solution y (x) for the general case that a singular point
exists? It turns out that there are at most two modifications needed to find such a solution. The main
concept is to allow non-integer powers for the terms in the series, an idea best introduced with an

example:

Example 4.26. Consider
22y + 3y —y =0

This equation has a regular singular point at = = 0:
2 (2z%y") +3(zy) —2y =0

Hence let us try a solution of the form

oo oo
y= g "t = 2% g anps”
n=0 n=0

Note that this is not a Taylor series, but instead a Frobenius series. We will need to determine
the new index o as well as the coefficients a,, - in fact, to avoid the problem of having = + z2 + - - -
and z (14 x+---) as distinct solutions, we will require ag # 0, so that o is fixed to be the first
power to appear with a non-zero coefficient in the series expansion.

We continue as before, remembering that we have to differentiate with o in the power, so that
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we have

o

Z[Z(n+a)(n+a— 1) +3(n+o0)—a]aa™? =
n=0
S [l + o) (20 + 20 + D] an — ap_1] 2™
n=0

This gives us the general recurrence relation for the problem:

[(n+0) 20+ 20+ )] an —an_1 =0

Now n = 0 gives the so-called indicial equation, from the requirement that ay # 0 and the fact

that a_,, = 0 for any m:

0+0)(0+20+1) = 0
c(204+1) = 0

1

= —2.0

o 5

This allows us to split the analysis into the two cases according to these two roots:

o= f%: We have the recurrence relation
o Ap—1 o Ap—1
in = (n—3)-2n (2n—-1)-n
so for a given ay we have
a = ﬂ
1-1
. a ao
“ T 3276120
o az ao
@ T 537 (5-3.1)-(3-2-1)
= @n-1)(2n-3)---5-3-1-nl
—(@n)!/@2n-2n—2)----4-2)] - n!
o ao
[(2n)!/ (27nY)] - n!
o 2”@0
(20!
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This gives the solution

= aox*% cosh (\/ 2;1:)

which we are lucky enough to be able to write in closed form.

o=0: This solution has recurrence relation

Qp—1

n = n(2n+1)

and the solution is, similarly to the above, given by

n!(2n + 1(;!/ (2nn!)
2”@0
(2n +1)!

Qp -

and hence

<, gngn
_ 0
vz = 0¥ Z(2n+1)!
n=0

e

!
— (2n+ 1)!

00 2n+1
ag (v2z)
v 2x — (2n—|— 1)'

= \%x*% sinh (\/%)

which again is fortunately amenable to a closed form representation.

The general solution is therefore

y = z72 [A cosh v2x + Bsinh v 295]

Now we can run into difficulties when the roots of the indicial equation are separated by an integer,
because it is possible that the second solution gets ‘caught up’ in the first, in some sense. Here are

two examples, the first of which shows that it is still possible that the basic approach works, and the
second of which shows how it can totally fail.
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Example 4.27. Consider
/! 6 / 4
W ——y + {9+ 5 )y=0
T T
This equation has a regular singular point at = = 0:
9 (2%y") — 6 (zy) + (92> +4)y =0

Hence let us try a solution of the form

o0 o0
y= E "t = 2° g anpr”
n=0 n=0

This gives us the equation

o0

Z[9(”"‘0)(”"‘0—1)—6(n+0)+9x2+4]anx”+‘7 = 0
n=0
Z [3(n+0)(Bn+30—5)+4a, +9a, o]z"™ = 0
n=0

So the recurrence relation is

[[3(n+0) (3n+30 —5) + 4, +9a, > =0

The indicial equation is easily solved:

30+0)(0+30c—-5)+4 =
902 —1504+4 =
B0 —1)(Bc—4) =

g =

Wk O © o

W >

Now we have two roots separated by an integer, namely 1. Let us see what happens:

o=1i: We have the recurrence relation

90/”,2 _ Gp—2
Bn+1)3n—-4)+4  n(n-1)

Qp = —

so for even n, we have

and for odd n we have an arbitrary a; followed by

ai

aam+41 = (71)7” (2m+ 1)|
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o= %: Already implicitly taken account of by the freedom in choice of a;.

The general solution can therefore be written as

y = 3 [ag cosz + aj sin ]

This case worked out to give us two solutions; however, this does not necessarily have to happen:

Example 4.28. Consider
I2y// +SCy/ + (562 o k,2) Y= 0

where k£ > 0 is an integer.

This equation manifestly has a regular singular point at = 0. So guess

o
n=0

Thus we have

i (n+o)(n+o—1)+(n+o)+2°—k*]a,2"™® = 0
n=0
i |:|:(n + 0)2 _ k2i| an + an72i| xn—‘,—o' -0
n=0

So the recurrence relation is

{(n + 0)2 — kQ] ap + ap_o =0

Solving the indicial equation gives us the values for o:

O0+0)P -k = 0
o = =k

Again, we have two roots separated by an integer, 2k. Let us see what happens:

o=k: We have the recurrence relation
4 = — Qp—2
" n (n + 2k)
so for even n, we have
= ()" -
fdam = O om(2m—2)- - 4-2x (2m + 2k) (2m + 2k — 2) -~ - (2 + 2k) - 2k
k!
= (=)™
(=)™ 0 gy (o 5 o
1
= aok! (—].)m

22m (m)! (m + k)!
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and for odd n we have a,, = 0 since a; = a_1/ (1 + 2k) = 0, and future values are all

easily seen from this as being zero.

Thus, rescaling slightly by 1/ (k!2¥), we have the solution

(D"
Fm! (m + k)!

oo
_ k
y1 = agJy (z) = apw Z ST
m=0

(Jm () is called a Bessel function of the first kind)

o = —k:  This time, we have
Qp—2
n (n — 2k)

ap =

which again gives a,, = 0 for odd n. However, for even n something surprising happens:
the formula becomes invalid at n = 2k. Let us go back, then, to the original recurrence
relation [(n + 0)2 — kz} an + an_o =n(n—2k)a, + a,—2 = 0. At n = 2k this tells us

Oay, + ap—o = 0

Ap_2 = 0

But then a,—4y = — (n — 2) (n — 2 — 2k) a,,—2 = 0, and so on, all the way back to as = 0.
But then
2~(272k)a2+a0:0

implies that ag = 0, which is a contradiction! (Recall we originally choose ¢ so that ag

was the least non-zero coefficient.)

Hence there is no general solution of this form, as one degree of freedom is insufficient to match

any initial conditions.

So what are we missing? To work out the form of the next solution, we can apply the techniques

we developed in section 4.1.3 on the method of reduction of order.

Y2 = v

Y +oy +qy =

(V'y1 + 20"y +oyl) +p Wy toyy) +quyn =
vy + vy + gyl 0"y + 2y o) =

o o o o

Oy 4+ (20 +pyn) v’ =
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From this equation we can immediately solve for v':

o 2+
o Y1
In|v'| = —2In|y| — /pd:c
o = %67 [ pdx
Y1

Then it follows that there is a solution
1 .
Y2 = ylfge‘fpd””dx
Y1

or, writing this more carefully,

1

— [ plu)du gy
e
3 (t)

@)= [

which is a result that can also be derived from using the Wronskian W = Wye =/ 7dz.

Now assume we already have a series solution for y; () which we will write as

o0
y=a" anz"

n=0

taking xo = 0 for simplicity, and that we also have a Taylor series for zp (z) that we write

and 22q (z) that we write

Now the indicial equation can be calculated in terms of these series by expanding zp and z2q as

follows:
(2*y") + (zp) (zy/) + (2%q)y = ©
[(n-f—O') (n-I-O'— 1) —&—xp(x) (n_|_0-) +x2q (m)} anxn-‘,-g' -0
n=0
U(O'_l)ﬁ—aflg_’_ﬂiZ = 0
o’ + (a1 —1o+fn = 0

Hence the sum of the two roots is 07 + 02 = 1 — a_1, and we already know that 01 —oo =m >0

is a non-negative integer (as o; was assumed to be the larger root, and they differ by an integer). It
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follows that 207 =1 — «w_1 + m so that

Y2 (t) = (t1)? [Z ant"] = 27 [Z ant"] = me-)tm N ") g
n=0 n=0 n=0

for some other set of coefficients a), - note that aj # 0 still holds. The other expression we need a

Taylor series for is exp (7 f K pdu):
t o, 00
_ d - _ hatntl aLut|d
exp( /pu) exp / " —l—ngoau U
= exp| —a /t du exp [ — i al t"
= p -1 w P nzo n

oo
—a_q "yn
t g a,t
n=0

for new coefficients o, and o/, noting that exp (f (z)) = 1+ f (x)+ f (z)> /24 - is everywhere equal
to its power series for the second term, and recalling the results on el ¥ discussed in section 3.1 for
the first. (The constant term from the integral is absorbed into the a!.)

We are now ready to construct ys:

1
Y3 (t)

Y -~
n=0
x o) -1 «
— (x)/ gem [Z at™| > apttdt
n=0

n=0

o It p(u)du gy

) = 0 [

1 oo
ot Z o/t dt
n=0

Now recall that aj, # 0, so that the ratio of the two Taylor series itself has a Taylor series around

t = 0 (as the denominator has a non-zero value af, at this point); hence we can write

z %)
Y2 =1 / T gttt
n=0

Now assuming that we can integrate the series term by term? we get a few initial terms integrating
negative powers of ¢, then another Taylor series. The reason that a special case arises for integer m is
that we can have (though we do not necessarily have to) a term t~1=™~,.#"™ = ~,, /t which does not

integrate to give a polynomial:

o0
Y2 =1 lx_m Z V" + Ym In 33]

n=0

9This is valid; there are a few initial terms with negative powers of ¢, and then a Taylor series. The integrated
expression for a Taylor series has the same radius of convergence as the original.
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The general solution has a In-type singularity at x = 0!
Note that by recalling the expression for y; as a power series, we can incorporate this into the new
Taylor series via

oo 0o
Y2 = TmlY1 Inx + z " [xgl Z anxn] [Z ’Y;an‘|
n=0 n=0
o0
= Ypy1lnzx 427" [Z bnx”]

n=0

o]

n=0

Ymy1 Inz + 272

Indeed, it turns out that the remaining solution is in general of the form

Yo = In (:p — xo) Y1 + Z bn (LC — xo)"+02

n=0

)n+01

where y; = Y7 g an (z — 2o is the normal solution corresponding to the larger solution o1 > o9.

Example 4.29. The second solution to z%y” + zy’ + (22 — k?) y = 0 where k > 0 is an integer is

of the form

y2 = InaJy (x) + Z bz "
n=0

There is in fact a general theorem about the existence of these solutions!®, which we are not going

to prove formally here.

Theorem 4.30 (Fuchs).

108ee “Lectures on differential and integral equations” by Kosaku Yosida.
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As a final observation, note that if we have a forced equation

Yy +p@)y +q(x)y=g(z)

then solving this for power series is precisely equivalent to finding a particular solution and then solving
the homogeneous version of the equation; as a result, essentially the same ideas apply, if we assume

that we can find a particular solution.

4.7 Systems of Linear Equations

Another case we have conspicuously failed to address so far is that where we have more than one

unknown variable. Consider, for example, the two first-order equations

91 = ayr +by2a + f1(t)
U2 = cyr +dys+ fo (2)

We can write this more concisely in terms of a vector Y, using yet another vector notation:

Y=MY+F

() () ()

More generally, M = M (t) can be a function of the independent variable, if we wish to encode

where

equations without constant coefficients. However, we will leave these ideas until section 6, where we

will discuss the general solution of these equations.

4.7.1 Equivalence to higher-order equations

The first notable thing we can do is perhaps suggested by the vector formulation of the problem - it is
clear that the case where Y is a solution vector with entries y and y corresponds to something like a

second-order equation. In fact, let us take an equation
yray+by=f
and write y1 =y, yo = ¢¥. Then y = ys and o = § = f — ays — byy so
0 1 0
Y +
-b —a f

As we will see in the later section, we can easily extend this to write any nth-order ODE as a
system of n first-order ODEs.

Strikingly, though, it is also possible to reverse this reduction, and transform a two-variable first-

Y
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order problem into a one-variable second-order problem. Consider the value of §j:

i1 = ag+bj+ fi
= agy + (beys + bdys +bf2) + fr
= agr+beyr +d (i —ayr — fr) +bf2+ fi
i1 —(a+d)jn+(ad—bc)yr = bfs—dfs1 + fi

Note that the homogeneous version of this equation is simply
i1 —tr (M) gy +det (M)y; =0

where tr and det are the trace and determinant respectively - in fact, for this constant coefficient
case, this has exactly the same characteristic equation as the matrix! Therefore, the eigenvalues of the
matrix are precisely the eigenvalues of the differential operator here.

Once y; is known, finding y» is trivial from the original equations (although if b = 0 we have to
solve the second first-order ODE for y). We note that y, should have solutions which are multiples

of the same eigenfunctions.

4.7.2 Solving the system

The fact that the solutions for y; are in general of the form e* (and the related eigenfunctions) where
A is an eigenvalue of the matrix suggests that we may be able to solve this problem in a very similar
way to the one-dimensional case, by looking for constant multiples of the complementary function.

Consider

-
I

MY +F
Y-MY = F

We guess that there is a complementary function of the form

Y, = velt

noting that the equation is still linear. This implies that

Aver — MveM = 0

Mv = Mlv

which is precisely the statement that v is an eigenvalue of the matrix M with eigenvalue A, which fits
in very well from what we noted above.

Recall that we can obtain the characteristic equation for matrix eigenvalue A by noting that
(M —X)v = 0 for some v # 0, and hence det (M — AI) = 0. Then we must find the appropri-

ate vector v.

Remark. We will not address the case of a repeated eigenvalue, where we may not even have two
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eigenvectors, or of forcing proportional to an eigenvalue, in this section. The generalizations from the

single-variable case are fairly direct, and we will give a more complete treatment in section 6.3.

v=(2% 1)y
15 —4

Consider the trial complementary function Y, = ve*. Then we have

Example 4.31. Solve

—2 - 1
=0
‘ 15 —4—\
24+N(@4+N)—-15 = 0
AN 4+6A—T7 = 0
A=1D\+7) = 0

so the eigenvalues are A = 1, —7. We must find the eigenvector for each case:

()

—3vi1+ve = 0

-
(0 -

Sv1+v2 = 0

()

So the general complementary function (our general solution) can be written as

A=1: We see (M — AI)v =0, so

|
=)

and hence one solution is

A= -—T: We have

and so

Y = A ! e +B ! et
3 =5

y1 = Ael+Be ™

yo = 3Ae' —5Be” ™
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Y1

Figure 4.13: The trajectories in phase space of the example

Just as we could draw a two-dimensional phase-space for second order equations, with variables
y1 and g, it is possible to depict all behaviour of systems like this on a diagram with one axis
corresponding to y; and another corresponding to ys. Figure 4.13 shows that the system has a saddle
point at (0,0), and hence this point is overall unstable, because an initial point with a small component
in the (1, 3) direction will tend to +oo.

In general, if

Y = viet?t 4 vyete?

then we categorize the point (0,0) as follows, ignoring the degenerate cases with repeated roots (for

examples, see Figure 4.14):
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n-degenerate solutions

Figure 4.14: Flow diagrams for no
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(i) If A1, Ay are both real, and one is positive and the other negative, then we get a saddle as was

shown in our example Figure 4.13.

(ii) If they are both real and have the same sign, with A; # Ag, then either

(a) the roots are both negative, and we get a stable node, since as t — 0o, any initial Y tends
to 0.

(b) the roots are both positive, and we get an unstable node, which is the same with the

direction (‘time’) reversed.

(iii) If A; and Ay are complex, then since the system is real, they are complex conjugates. The

behaviour of the system in then determined by the magnitude of the real part of the roots.

(a) If Re(A) < 0 then we get a stable spiral, since the magnitude decays, whilst the direction
oscillates.

(b) If Re(A) > 0 then we get an unstable spiral, which is the reversed version of the stable
spiral.
(c) In the special case of a pure imaginary pair of roots A\, we get a centre, in which the
magnitude never changes, but we still get oscillation - hence the system is entirely periodic.
Example 4.32. Now consider the following forced version of the above equation:

. -2 1 2
Y = Y + et
15 —4 1

We can make the educated guess (based on the fact that this is exactly the same as forcing a
second-order system) that there is a particular solution

Y = ue?
Gfm)_ (-2 1) (m N 2
(5] 15 —4 (5] 1
4 1\ (w) (2
-15 6 ) \uy) \1
and we can invert this matrix (since 2 is not an eigenvalue, we know this matrix will always be
u) 6 1) (2
u) 15 4) \1
_ 1w
- 9\34
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invertible) to get
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Hence this system has a general solution

1 1
Y = A e +B
3 -5
_ 13
y1 = Ae'+ Be 775—5 2t
4
Yy = 3Ae' —5Be " — %e

2t
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5 Partial Differential Equations

The final new topic we will discuss in this course is the field of partial differential equations. This is
a very important field which is very poorly understood in general. Partial differential equations often
arise in physical systems where the rate of change of some quantity over time is dependent on its rate
of change in space - for example, transfers of heat occur more rapidly when there is a larger heat
gradient, so there are partial derivatives with respect to ¢ and x in the one-dimensional heat equation.
We will study the so-called diffusion equation below.

However, first we will consider a more fundamental idea which arises with incredible frequency in

physical problems: the wave equation.

5.1 Wave Equations

We will first consider the simplest construction of an abstract wave equation.

5.1.1 First-order wave equation

Imagine some quantity y (x,t) which oscillates in the presence of waves passing through the medium

at a constant speed c. If we pick a point of fixed height on a propagating wave, x; (t), then we have

d$1

ik
i ¢

It follows that, using the chain rule,

8y (‘Tl (t) vt)

ot =0
8y($1,t)%+8y($1,t) = 0
81'1 de¢ 315
oy dy
a = Cor
The equation
oy _ 0
ot Oz

is an advection equation, which can be described as the (unforced) first-order wave equation for y,
where c is the constant speed of wave propagation, which we have constrained to be in the negative x
direction as time passes by choosing a sign.

Since dy/dt = 0 along paths in (¢, x) space with da/dt = —¢, namely x = ¢ — ct, we can always
write

y=f(z0) =f(x+ct)

In fact, since this does indeed solve the equation even without any information about f, this is the
general solution of the first-order wave equation. Note that we do not have an unknown constant, but
instead an unknown function. This is characteristic of partial differential equations. Another way of
looking at it is that we need one initial condition for every single x + ct paths - a continuous infinity

of initial conditions.
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Remark. Of course, in order for the equation to be well-defined we need f to have the first partial

derivatives in = and ¢ involved in the equation, so f is not totally unconstrained unless we allow some
sort of singular behaviour.

The result is, of course, not surprising given how we derived it. We thought about a wave-like

shape (for example, a wavelet, or a bounded oscillation) traveling along at a constant velocity of —e¢,

and we found that the solutions consist of all functions which move left at that speed over time, as
shown in Figure 5.1.

Figure 5.1: The translation of an example wavelet at speed ¢

Explicitly, if the initial condition if y = F (x) at time ¢ = 0, then y = F (x + ct) at later times:
y(@,0)=F(r) = y(t)=F(+ct)

Example 5.1. Solve
Ay dy . 2
=7 — 22  with =72
" c ith y(z,0) =2 3

This is now trivial to solve, since we know y = f (x + ct), and hence using the initial condition,
we immediately have

=3 = f(z+0)
y = (z+ct)* -3

Note that the paths in (¢, x) space along which y is constant are by definition exactly the contours
of y in this space, as shown in Figure 5.2. Along each one these curves, y is reduced to a simple ordinary
differential equation - in this case the simple 3’ = 0 - with an independent set of initial conditions for
each curve. These curves are called characteristic curves or just characteristics, and the method of

characteristics solves PDEs by finding these curves and then solving the resulting families of ODEs.

The method of characteristics clearly also works for PDEs with inhomogeneities, so long as we can
solve the associated ODE. For instance:
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Figure 5.2: The form of contours of any solution to the first order wave equation

Example 5.2. Solve

dy Oy . . B
% = op +wsin (wt) with y(z,0) = cos (px)

In this case, along the characteristic curves

ar
a -
= x = xg9g—ct
we have
d
d—zz = wsin (wt)
= y(t) = A—cos(wt)

Now at time ¢ = 0 we have
y(x,0) = A — 1= cos(px)

and since z (0) = xg it follows that

A = 1+ cos(pxo)
y(z,t) = 14 cos(plz+ ct]) — cos (wt)

5.1.2 Second-order wave equation

A more physically derived version of the wave equation can be derived by taking the physical limit of
a suitable discrete medium, such as a series of springs connected to each other with masses.
Imagine a series of identical small masses m connected in a line by identical springs with spring

constant k of natural length h. The equilibrium positions of three adjacent masses are x — h, x and
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x+h - let u (z) be the function giving the distance from the equilibrium position of the mass normally
located at x.

Then Newton’s second law says that the force is related to the acceleration by

82
F =mii(x,t) = ma—tg
whilst Hooke’s law states that

= Fm+h+Fz—h
= ku(z+h,t)—u(z,t)]+ku(x—~ht)—u(z,t)
= ku(z+ht)+u(x—ht)—2u(z,t)

Equating these two forces gives the following equation of motion:

0%u

vy =klu(z+h,t) —2u(z,t) +u(x — h,t))

To take the limit of h — 0, we consider N — co masses, spaced along a constant length L = Nh
and weighing a constant total mass M = Nm - the total stiffness of the spring is also kept constant

at K = k/N. Then the above equation can be rewritten as

@7KL2 u(z+h,t) —2u(z,t) +u(z — h,t)
oz M h?

and the limit can now be taken easily:

0%y KIL?0%*u

o2 M a2
Pu 0%
gu _ 294
ot? 0x?

This equation can also be written
Pu 0%

oz~ © or

and is hence called a hyperbolic'' partial differential equation, entirely by analogy with the implicit

=0

formula for a hyperbola: 22/a? — y?/b? = 1, though note that it is homogeneous.

In fact, this homogeneity makes it tempting to solve the equation by ‘factoring’ the differential

0 0 0] 0
<63768t> <8I+Cat>UD2D1UO

D1 D2

operator:

Hinear, second-order PDEs are classified in broadly the same way as polynomials are, but these definitions can be
extended via more abstract conditions to higher order equations.
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and deducing that u satisfies the original equation if u satisfies one of the two advection (first-order

wave) equations there. In fact, this is valid, because these two components commute, D1 Dy = Dy D;:

are both solutions, as you can easily check.
any'? function of the form

f x4+ ct)
g (x —ct)

Further, because of the linearity of the equation, so is

u=f(x+ct)+g(x—ct)

What is less clear is whether all solutions are of this form, or if we are missing some solutions. In

order to check this, it is useful to apply a key idea in PDEs: a change of variables.

Theorem 5.3.

Proof. In fact, the fairly heuristic approach we have adopted suggests a natural change of variables,

to
Then
SO
0
or
0
ot

12 A5 before, observe we need u to have the second partial derivatives involved.
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which means that the original equation becomes

tfo o)y _ 1[0 oY
oc ' on T oal ooy
0%y 0%y 0%y B 0%y %y 0%y
2¢2 "2 oean +7 - e aganJ’i
62
= 0
0&0n

which we can solve straightforwardly by simply integrating, and remembering that ‘constants’ of

integration become arbitrary functions of the variables held constant:
9y

o

Y

fi(m)
f2 () + f3(£)

Therefore, the general solution is
y=[f(@+ct)+g(@—ct)

for some arbitrary functions f and g.

As before, we need infinitely many conditions in order to find f and g - for example, two pieces
of information, y (z,0) and dy/0t, as initial conditions (at ¢ = 0); and two boundary conditions, the

value of y for some boundary points like z — +oo.

Example 5.4. Solve the (second-order) wave equation in the case

y(@0) = ha)
S| @0 = o

ot

with the boundary conditions
y(z,t) =0 as z — +oo

and assuming that h () — 0 as x — %o0.
This is the general case of an infinite medium held still in some shape h () and then released

at time ¢t = 0. From the initial conditions, we have

f@)+g(@) = h(z)
cf' (x) —cg'(z) = 0
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Hence f’ = ¢/, from which it follows that f = g + C. Thus

2g(x)+C = h(x)
o(z) = h(a:)z—C
fla) = h(x)2+C

and so
y(x,t) = fx+ct)+g(x—ct)

_ h@+ct)+C  h(z—ct)-C

B 2 + 2
h(x+ct)+ h(x—ct)

2

This general result shows that the result is that the shape of h splits into two identical compo-

nents which travel in opposite directions at speed c.

Remark. We did not explicitly use the boundary conditions here, because the solution automatically
obeys them if h does.

Example 5.5. If h (z) = e~1/%" then
LT 4 atet)® | —1/(a—ct)?
y(x,t) = 3 le +e }

which is depicted in Figure 5.3 - the initial shape is the blue-shaded shape, gradually splitting into

the shapes shown.

X

Figure 5.3: The separation of the initial packet into two identical components
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5.2 Diffusion Equation

The final example we shall treat here demonstrates how partial differential equations can become
rapidly more complicated to solve despite having extremely simple forms. It is motivated by the
extremely physical problem of heat diffusion.

Let T (z,t) be the temperature of a rod. Then the rate of change of the temperature is determined

by the diffusion equation, which is one dimension is the PDE

or _ o°T
ot~ ‘o2

where « is the (thermal) diffusivity. This is a constant for the problem of heat transfer, and in this
case we call this equation the one dimensional heat equation. It is a parabolic PDE (to be compared

with y = 22, and contrasted to the hyperbolic wave equation).

Remark. The equation can be derived from Fourier’s law, which states that the rate at which heat

energy U flows is proportional to the (negative) temperature gradient across the boundary. Hence for

any small period of time I; and of space I, = [xg — Az, zo — Ax], we have essentially
/ / W gedt o / ou _w at
Iy J I ot I Ox r=x0+Ax Ox r=x0—Ax

0*U
= ——dxzdt
/It I, 8.’E2

from which it follows that the difference two functions being integrated is in fact identically 0. Then

noting that energy and temperature are proportional, the result follows.

Example 5.6. Consider an infinitely long bar heated at one end; then we can set
T (z,0)=0

so that the temperature is initially O everywhere, and heat the end to keep it at a constant tem-
perature:
0 t<0

Q t>0

T(0,t) = H () =

We also assume that at any fixed time ¢, T (z,t) — 0 as z — oo.

In the last section, we found that a clever change of variables transformed the PDE into another
PDE which was easier to solve. This problem does not admit such a natural change of variables,
however. We also found that it was possible to transform a PDE to an ODE by finding a characteristic,
or path along which y is invariant. Whilst we cannot do quite the same thing here, we can adopt another
technique, and find a similarity solution. The basic idea is to find transformations of variables under

which the equation and initial conditions are invariant, and to deduce the form of a solution in terms

134



of one function, which can then be found by solving a single ODE. If you are not interested in the

derivation, feel free to skip over the following argument.
Consider the dilation transformation

o =X\ax, t'=\t, T =\T

The terms in the heat equation transform as follows:

al _ )\bfc aT’

ot ot
*r J2a—c 02T’
Ox? Ox'?

50 b 0T T
AN G TN g

which means that the equation is invariant if b — ¢ = 2a — ¢ (that is, b = 2a); by this we mean that

T (x,t) solves the equation if and only if 77 (2/,t) does too.

Now note that we can also find combinations of 7', x and ¢ which are invariant (for example by
considering zt/T* = (2/)" (¢')? (T")* = Aai+bitekgifi Tk and solving ai + bj + ck = 0). In particular

—c/b

(T) ()" = T [\t] T =Tl
/

x (t’)fa/b = Mz [)\b]ia/b =zt

are invariant for any a, b, c. Since we have established b = 2aq, it follows that

x’ T

IR

is invariant. This suggests looking for a solution of the form

£

T T
(t/)c/b - W =0 (f)

T = t?9(¢)

In this case, we find

oT c _ /%
i %t(cﬂa) 10 (&) + 1720’ (€)

R t(C/Qa)fl |:

S

7))

[N

io(g) +t0' (€) (—
— fle/20-1 Hae € - gf)’ (5)}
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and

oT o¢
= tc/2a9/ vs
ox (©) ox
= (e/20)=(1/2) g1 3
0T o€
T2 ple/2a)=(1/2) g 7
— t(c/2a)710// (6)
Hence the PDE has become
le/2a)—1 ig (&) — §0/ (©) - qtle/20)=1gn (©)
2a 2
0f" () + 206~ S0(¢) = 0
2 2a

which is an ODE for 0 ().

So all we need to do is make a choice for a and ¢ (in fact, this amounts to only one choice, because
only their ratios are significant). We do this by seeing what combination of them give invariant
boundary conditions, which depends on the nature of the boundary conditions.

In this case, the boundary condition is T' (0,¢) = Q. Note that T’ = /22 (0) which is only constant

if and only if ¢ = 0. Then the above equation becomes

£

af” (&) +560'(€) =0

where

<

T =1/ () =0 (

)

To summarize, we are attempting to find solutions

T (z,t) =0 (\2)

which - as you can verify directly - is a solution of the equation iff 8 satisfies

§
2

ab” (€) + 26/ (€) = 0

Now this equation can be solved using the integrating factor p = exp [ i %di] = ¢$’/4@ gince then

(652/4(10/)/ = 0

0 = Ae /e
6 = A/e‘52/4“d§+B
= Cerf —5 + B
2\/a
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where we use:

Definition 5.7. The error function erf is defined by

erf (z) = \/27?/0 et

and has no closed form. (See Figure 5.4.)

0 T e

Figure 5.4: The error function erf (z)

Hence for the point-like boundary condition, we have (for ¢ > 0) that
T(0,6)=0(0)=Q
which implies that B = Q.

Also, T (x,t) — 0 as t — 0 (from above) so 6 (&) — 0 as & = z/v/t — co. Therefore, because
erf (z) — 1 as z — oo, it follows that C'= —1, and so

-afn(:5)

It follows that

T(x,t) = Q{l—erf(Z\j&)]

x
= Qerfc (W)

where:

Definition 5.8. The complementary error function erfc is defined by

erfc (2) = 1 — erf (2)

Hence in this problem, the temperature curve at any fixed time ¢ is given by a curve like Qerfc (),
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except stretched horizontally by a factor v/at. Over time, the shape is self-similar (hence similarity

solution), being stretched like v/t as time passes. A few curves are shown in Figure 5.5.
T

A
Q

0

Figure 5.5: The temperature distribution with 5 equally spaced samples
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6 * Generalized Methods for Ordinary Differential Equations

6.1 Systems of Linear Equations
6.2 First-Order Vector Equations

In section 4.7, we looked at various equations of the form
Y=M(@#)Y+F(t)

for an unknown vector Y (¢). How do we solve this for a general vector Y (¢) € R™, general matrix
M (t) and general forcing term F (¢)?

The first thing we will do is look at the simplest case in R"™:
Y = MY, constant M

For the one-dimensional case § = my, we know the solution is y = Aexp (mt). Why does this work?

The key idea is that d (expt) /dt = expt, a special property of the function expt.

6.2.1 Matrix exponentials

But now we have to somehow include matrices into the answer. We could approach this is various
ways; one is to think about diagonalizing the M matrix, if possible; then we find that some transformed
version of Y will obey some simplified pair of separated equations. However, this leads us away into
worrying about diagonalization, which is an unnecessary complication.

Instead, let’s think about how we might try to define an exponential of a matrix, so that the
chain rule gives “d (exp Mt) /dt = M exp Mt”. So how can we define exp? Commonly, we define these

functions in terms of their Taylor series - recall

t=1+t¢ 1t2 1t3 Nt
exXptr = -+ +§ +§ +7ZOE
m=

Can we simply shove a matrix into this calculation? We can certainly let 7" be a n x n matrix and

write down

expT:I+T+1T2+lT3+---= i Sl

2 3! = m/!
since we know how to calculate powers of a matrix by multiplying it together - the only question
we’d worry about is whether the sum converges to a well-defined matrix. (What do we mean by
convergence? Simply that every component of the matrix we’re making up converges individually.
Any other resonable notions of convergence are equivalent.) This is not particularly hard to show, but

not very relevant - the key idea is you still can’t grow very rapidly term by term.
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Proof. Let A be the magnitude of the largest element in the matrix 7. Then note that if B similarly

bounds some other matrix 7”, we have

n

n
(TT") ;.| = Z (T3T) | < Z |T3; )| <n-AB
=1

j=1

Therefore, T2 has elements no larger in magnitude than nA?; T3 is bounded by n?43; and by
induction 7™ is bounded by n™A™ (adding a factor of n for simplicity). As a result, each element
of our sum defining exp T is bounded by (nA)™ /m! - this means the series for each element is
absolutely convergent, since we know exp (nA) is well-defined. It is a theorem - from the course

Analysis I - that this implies the series is converegnt. O

Anyhow, we can take the definition
_ 1, 1_3 L
expT—I—&—Z—i-il +§Z +...—§ —

m=0
and run with it. Let T = Mt. Then (technically using more Analysis I theorems on differentiating

infinite series, but let us live dangerously)

m!

d d o 1™

But this means that we can solve

straightforwardly by

noting that

exp|: -, | =1
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6.2.2 The inhomogeneous case

Suppose
Y =MY +F(t)

where M is still a constant matrix. Checking first the one-dimensional case, we find § = my + f can

be solved by using an integrating factor:

(G —my—fle™ =

d (efmty) _ fefmt —

dt

o O

t
y = ™ [const. +/ e (1) dt’}

Can we use a similar trick with matrices? Noting M exp (Mt) = exp (Mt) M - which is obvious
from the series definition - we get

% (exp (—Mt)Y) = —Mexp(—Mt)Y +exp(—Mt)Y

= exp(—Mt) [Y - MY}
= exp(—Mt)F(t)

which we can solve by noting that
fexp (M#)] ™ = exp (— M)

(which can be shown by computing exp (Mt) exp (—Mt) in the series expansion) so that
t
Y = exp (Mt) [const. + / exp (—Mt')F (') dt’

6.2.3 The non-autonomous case?

So what if M = M (t) is time-dependent? Let’s return to the one-dimensional case to begin with,

¢y = m (t)y. This equation is separable:

=m(t) = %lny:m(t)

— y=yoe><p</tm(t) dt')

which clearly agrees with the m = const. case. Rather than worrying about the intermediate steps, let

us try generalizing the answer naively:

t
Y = {exp/ M (t) dt'} Y,
(The integral of a matrix is formed by integrating it component by component.)
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What happens? Let N = ft Mdt'.

d d < N™
&eXpN = aZ—

The problem is that if NM # M N, then the numerator is not necessarily the same as m-MN™~1.

Example 6.1. Consider

Then
t 0
N:
and so
N10+t0+1t20+1t30+ et 0

ex f— — _ e e s —

P 0 1 20/ 20\# o) 3\ 0 tlet—1) 1
but then

t

SeXpN = © 0
dt e(l+t)—1 0

1 t
MexpN = 0 © 0

2t 0) \t(e!=1) 1
_ et 0
[ \atet 0

You can easily check that this means you do not get the correct solution to a typical initial value

problem.

In fact, sadly we cannot solve this problem simply in general.

6.3 Degeneracy

We noted on a few occasions that there is a general principle at work for linear equations with constant
coefficients: if y. (z) = e** is some single solution to the homogeneous equation, then z - y. has a
remainder under the differential operator which is a multiple of y. = e**. This allowed us to solve

second-order degenerate equations.
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In fact, we can prove something slightly more general and very useful:

Lemma 6.2. For an nth-order forced linear equation, if y. (x) is some single solution to the com-

plementary equation, then applying the differential operator to x - y. gives
Dlzy.] = Eyc]
where E is another differential operator with related coefficients

Ely] = Z ici (y) ™Y

Proof. We have by definition that
Dley) = e (ay)?
Now by Leibniz’s product rule,

(@ye)” = o ()P +i- 1)V 40 (1)
= T (yc)(l) +1- (yc)(lil)

SO

Dlzy] = > [x (ye) D 44 - (yc)u—l)}

%

g .'L'D C+ iCi C(i_l)
[ye] Z (ye)

0
= Z ic; (yc)(kl)

Eyc]

where we used the fact that y. solves the equation D [y.] = 0 to simplify the expression. Note that
FE is another differential operator, of the reduced order n — 1, dependent only on the coefficients of

the original equation (that is, independent of y.). O

We can deduce several results from this.

Theorem 6.3.
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Proof. The characteristic equation of D is

g(p)=> cp' =0

We proceed by induction - assume that the result holds for multiplicity m — 1, and assume A is

a solution of multiplicity m > 1. Then the first derivative of g at A is zero - in fact, it is a root of

multiplicity m — 1. To see this, note that by definition

g(p) = (p=N"

for some polynomial h (1), and then

But we know that

h (1)

g (n) = ici’

which exactly the characteristic equation of the operator E'[-]. In fact, as y; = M2 gatisfies

D [y1] = 0 by the induction hypothesis, we have

D [mmfle)\m] —

Then once more, the induction hypothesis tells us that because A is a root of E’s characteristic

equation with multiplicity m — 1, y; = 2™ 2’ is a solution to F[y] = 0. Hence

D [:Cmfle)\m]

Now we are done by induction.

So we always have families of solutions of the form

for linear equations with constant coefficients.

=0

m—le)\z
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6.4 The Wronskian and Abel’s Theorem

Take any homogeneous, linear nth-order differential equation, which can be written in the form

dny dnfly dy _
P + Pn—1 (I)W+~~+p1 (x)ﬂero(x)ny

for some set of z on the real line R.

Theorem 6.4 (Abel’s Identity).

We shall prove this general statement, which has the corollary that W (z() # 0 implies W (z) # 0

for all x - that is, Abel’s Theorem.

Proof. The derivative of the Wronskian W is the derivative of a matrix determinant. Remembering

that (from the Leibniz formula) we can express the determinant as a sum over permutations of the

columns like so:
det A = ngn (0) A1o1)A20(2) - Ao (m)

we can see that

d
—detA = Z sgn (o) A'lg(l)Agg(g) o Ao (m)

dt
o
+ Z sgn (0) Ala’(l)A2a(2)/ ! Amo(m)
g
+ sgn (0) A15(1)A2e(2) - ;m(m)
[ed
and so if the solutions are y1,--- ,y, then
Y Yo Wn v1 Y2 o Un
Y1 Ys o Yn y! ys o Y
—_— yi y2 o Yn N yi vo o Yn
B v’ ya' o Y i’ ya' oy
-1 -1 -1 -1 -1 -1
yYL ) yén ) yé" ) y§n ) én ) y7(ln )
Y1 Ya Yn
Yy 73 Yn
+ N + ° ° . '7
y§n73) ygnfs) T(ln 3)
y§n72) y£n72) 145 nn72)
ygn) yén) o y%ﬂ)




But then every matrix except for the last has two identical rows, and therefore has determinant
0. So

i Yo o Un

yy Y3 Y

W/ — . . . . .
-2 -2 -2
Y S NPTV
gy

) k)

But now, using our expression for yz(n in terms of y§"_ we can subtract py times the first row,

p1 times the second, and so on, from the last row. This gives us

Y Y e Yr,
vy vy e Yn
w' = : : . :
T B
—pn71y§n_1) _pnflyén_l) e _pnflyﬁln_l)
= _panW

Then the result follows immediately, because we can integrate W’ /W to get In W and then
W =e" jzxo pn—l(t)dtWO

taking account of the various factors, and noting that the integral should be 0 at = = z. O

6.5 Variation of Parameters
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